亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction and analysis of a joint diagnostic model of machine learning for cryptorchidism based on single‐cell sequencing

小桶 基因 计算机科学 计算生物学 人工神经网络 生物信息学 生物 机器学习 基因本体论 基因表达 遗传学
作者
Yuehua Chen,Xiaomeng Zhou,Linghua Ji,Jun Zhao,Hua Xian,Yunzhao Xu,Ziheng Wang,Wenliang Ge
出处
期刊:Teratology [Wiley]
卷期号:116 (3) 被引量:2
标识
DOI:10.1002/bdr2.2316
摘要

Abstract Background Cryptorchidism is a condition in which one or both of a baby's testicles do not fully descend into the bottom of the scrotum. Newborns with cryptorchidism are at increased risk of developing infertility later in life. The aim of this study was to develop a novel diagnostic model for cryptorchidism and to identify new biomarkers associated with cryptorchidism. Methods The study data were obtained from RNA sequencing data of cryptorchid patients from Nantong University Hospital and the Gene Expression Omnibus (GEO) database. Differential expression analysis was used to obtain differentially expressed genes (DEGs) between the control and cryptorchid groups. These DEGs were analyzed for their functions by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment using GSEA software. Random Forest algorithm was used to screen central genes based on these DEGs. Neuralnet software package was used to develop artificial neural network models. Based on clinical data, receiver operating characteristic (ROC) was used to validate the models. Single‐cell sequencing analysis was used for the pathogenesis of cryptorchidism. Results We obtained a total of 525 important DEGs related to cryptorchidism, which are mainly associated with biological functions such as supramolecular complexes and microtubule cytoskeleton. Random forest approach screening obtained eight hub genes. A neural network based on the hub genes showed a 100% success rate of the model. Finally, single‐cell sequencing analysis validated the hub genes. Conclusion We developed a novel diagnostic model for cryptorchidism using artificial neural networks and validated its utility as an effective diagnostic tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子完成签到 ,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
嗯哼应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
嗯哼应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
脑洞疼应助缥缈嫣采纳,获得10
11秒前
伶俐海安完成签到 ,获得积分10
23秒前
yuan完成签到,获得积分10
47秒前
朴实寻真发布了新的文献求助10
48秒前
科研通AI2S应助TH采纳,获得10
56秒前
且从容完成签到,获得积分10
1分钟前
英俊的铭应助Ephemeral采纳,获得10
1分钟前
FashionBoy应助专注的月亮采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Ephemeral发布了新的文献求助10
1分钟前
1分钟前
专注的月亮完成签到,获得积分20
1分钟前
1分钟前
喵喵完成签到 ,获得积分10
1分钟前
1分钟前
彩色莞完成签到 ,获得积分10
1分钟前
1分钟前
li发布了新的文献求助10
2分钟前
想吃芝士荔枝烤鱼完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
2分钟前
IvanLoopy完成签到,获得积分10
2分钟前
2分钟前
IvanLoopy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
sunshine发布了新的文献求助10
2分钟前
缥缈嫣发布了新的文献求助10
2分钟前
2分钟前
澄碧千顷完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238825
求助须知:如何正确求助?哪些是违规求助? 2884185
关于积分的说明 8232705
捐赠科研通 2552267
什么是DOI,文献DOI怎么找? 1380569
科研通“疑难数据库(出版商)”最低求助积分说明 649063
邀请新用户注册赠送积分活动 624754