Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning

小桶 基因 计算生物学 毒理基因组学 生物信息学 生物 全基因组关联研究 单核苷酸多态性 遗传学 转录组 基因表达 基因型
作者
Shu Li,Shuice Liu,Xuefei Sun,Liying Hao,Qinghua Gao
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:274: 116168-116168 被引量:2
标识
DOI:10.1016/j.ecoenv.2024.116168
摘要

Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
www发布了新的文献求助10
1秒前
万能图书馆应助yanwowo采纳,获得10
1秒前
黄嘉慧完成签到 ,获得积分10
2秒前
想发一篇贾克斯完成签到,获得积分10
2秒前
3秒前
F_ken发布了新的文献求助10
3秒前
块块的加隆满口袋完成签到 ,获得积分10
4秒前
CT民工发布了新的文献求助10
4秒前
受伤冰菱完成签到,获得积分10
5秒前
lingyu完成签到,获得积分10
5秒前
6秒前
南絮发布了新的文献求助10
6秒前
ccc完成签到,获得积分10
6秒前
6秒前
6秒前
武工队队长石青山完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
卷儿w发布了新的文献求助40
9秒前
陆程文发布了新的文献求助10
9秒前
MXG完成签到,获得积分10
9秒前
隐形曼青应助ornot君君采纳,获得10
10秒前
zhulinkin完成签到 ,获得积分10
10秒前
睡醒了发布了新的文献求助10
11秒前
米鼓完成签到 ,获得积分10
12秒前
12秒前
科研发布了新的文献求助30
12秒前
青年才俊发布了新的文献求助30
13秒前
清脆的乌冬面完成签到,获得积分10
13秒前
13秒前
大模型应助芝麻球ii采纳,获得10
13秒前
WANG完成签到 ,获得积分10
13秒前
14秒前
myf完成签到,获得积分20
14秒前
14秒前
taiping发布了新的文献求助10
14秒前
幽悠梦儿完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978