Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning

小桶 基因 计算生物学 毒理基因组学 生物信息学 生物 全基因组关联研究 单核苷酸多态性 遗传学 转录组 基因表达 基因型
作者
Shu Li,Shuice Liu,Xuefei Sun,Liying Hao,Qinghua Gao
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier]
卷期号:274: 116168-116168 被引量:2
标识
DOI:10.1016/j.ecoenv.2024.116168
摘要

Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
roy发布了新的文献求助10
1秒前
2秒前
bb完成签到,获得积分10
2秒前
小蘑菇应助Yitianqi采纳,获得10
2秒前
gww发布了新的文献求助10
2秒前
zxx发布了新的文献求助10
3秒前
3秒前
小蘑菇应助pups采纳,获得10
3秒前
ZeSheng完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
6秒前
YuanFeng发布了新的文献求助10
7秒前
Forever完成签到,获得积分10
7秒前
9秒前
zhao发布了新的文献求助10
9秒前
10秒前
刘淼完成签到,获得积分10
10秒前
10秒前
10秒前
深情安青应助巍峨采纳,获得10
10秒前
科研小柠檬完成签到,获得积分10
10秒前
当代完成签到 ,获得积分10
11秒前
11秒前
11秒前
wwf发布了新的文献求助10
12秒前
dl应助大方元风采纳,获得10
12秒前
JEEH发布了新的文献求助10
13秒前
13秒前
星期八发布了新的文献求助10
13秒前
14秒前
14秒前
1233330发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
哈尼发布了新的文献求助10
15秒前
nature发布了新的文献求助10
16秒前
LioraLi发布了新的文献求助10
16秒前
大胆的以冬完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709417
求助须知:如何正确求助?哪些是违规求助? 5194819
关于积分的说明 15256984
捐赠科研通 4862196
什么是DOI,文献DOI怎么找? 2609928
邀请新用户注册赠送积分活动 1560336
关于科研通互助平台的介绍 1518058