CenterNet++ for Object Detection

计算机科学 目标检测 人工智能 探测器 计算机视觉 编码(集合论) 对象(语法) 自上而下和自下而上的设计 模式识别(心理学) 集合(抽象数据类型) 程序设计语言 电信 软件工程
作者
Kaiwen Duan,Song Bai,Lingxi Xie,Honggang Qi,Qingming Huang,Qi Tian
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:17
标识
DOI:10.1109/tpami.2023.3342120
摘要

There are two mainstream approaches for object detection: top-down and bottom-up. The state-of-the-art approaches are mainly top-down methods. In this paper, we demonstrate that bottom-up approaches show competitive performance compared with top-down approaches and have higher recall rates. Our approach, named CenterNet, detects each object as a triplet of keypoints (top-left and bottom-right corners and the center keypoint). We first group the corners according to some designed cues and confirm the object locations based on the center keypoints. The corner keypoints allow the approach to detect objects of various scales and shapes and the center keypoint reduces the confusion introduced by a large number of false-positive proposals. Our approach is an anchor-free detector because it does not need to define explicit anchor boxes. We adapt our approach to backbones with different structures, including ‘hourglass’- like networks and ‘pyramid’- like networks, which detect objects in single-resolution and multi-resolution feature maps, respectively. On the MS-COCO dataset, CenterNet with Res2Net-101 and Swin-Transformer achieve average precisions (APs) of 53.7% and 57.1%, respectively, outperforming all existing bottom-up detectors and achieving state-of-the-art performance. We also design a real-time CenterNet model, which achieves a good trade-off between accuracy and speed, with an AP of 43.6% at 30.5 frames per second (FPS). The code is available at https://github.com/Duankaiwen/PyCenterNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小石头完成签到,获得积分10
1秒前
1秒前
YL完成签到 ,获得积分10
1秒前
1秒前
上官若男应助整齐路灯采纳,获得10
1秒前
yyj发布了新的文献求助10
1秒前
细腻的麦片完成签到,获得积分20
2秒前
2秒前
君君完成签到,获得积分10
3秒前
cchen0902完成签到,获得积分10
3秒前
Sara发布了新的文献求助10
3秒前
3秒前
干饭闪电狼完成签到,获得积分10
4秒前
YUZU完成签到,获得积分10
5秒前
123完成签到,获得积分10
6秒前
pcx完成签到,获得积分10
6秒前
phd完成签到,获得积分10
7秒前
7秒前
曹志毅完成签到,获得积分10
7秒前
mito发布了新的文献求助10
8秒前
无悔呀发布了新的文献求助10
8秒前
9秒前
君君发布了新的文献求助10
9秒前
Yang完成签到,获得积分10
10秒前
风雨完成签到,获得积分10
10秒前
10秒前
11秒前
彭于晏应助小西采纳,获得30
11秒前
可爱的函函应助布布采纳,获得10
12秒前
13秒前
轩辕德地发布了新的文献求助10
13秒前
nine发布了新的文献求助30
13秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
14秒前
JamesPei应助小敦采纳,获得10
14秒前
今非发布了新的文献求助10
14秒前
李健的小迷弟应助通~采纳,获得30
14秒前
14秒前
14秒前
fanfan44390发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794