Accurate and fast calibration for FBG demodulation based on deep learning and ensemble learning

解调 计算机科学 残余物 人工智能 校准 滤波器(信号处理) Boosting(机器学习) 算法 电子工程 电信 计算机视觉 数学 统计 工程类 频道(广播)
作者
Wenjuan Sheng,Xin Yin,Jianxiang Wen,Gang–Ding Peng
出处
期刊:Optics and Laser Technology [Elsevier]
卷期号:172: 110476-110476 被引量:4
标识
DOI:10.1016/j.optlastec.2023.110476
摘要

Accurate and rapid demodulation plays a crucial role in fiber Bragg grating (FBG) sensing systems. The Fabry-Perot (F-P) filter is a dependable demodulation technique with excellent accuracy. However, the F-P filter suffers from demodulation error drift in a temperature-changing environment. The non-repeatable wavelength scanning affects the accuracy and stability of demodulation. To solve the problem, an accurate and rapid calibration approach is proposed for FBG demodulation. First, the temporal convolutional network (TCN) is utilized to extract the hidden information and long-term temporal relationships in the input features including temperature, a temperature changing rate, and shift of reference grating. Second, a state-of-the-art light gradient boosting machine (LightGBM) capable of forecasting demodulation error is adopted for rapid forecasting. To demonstrate the effectiveness of the proposed approach, the traditional TCN model and the composited-residual-block TCN (CTCN) model are both discussed, and the temperature-drift experiments are designed and conducted in two temperature-changing environments. The experimental results show that, compared to the widely applied long short-term memory (LSTM) model, the TCN-LightGBM model achieves higher prediction accuracy and reduces computation time by at least 59.68%. The proposed approach is an affordable and effective alternative to the existing hardware-based calibration techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助冷艳的纸鹤采纳,获得10
刚刚
刚刚
我是老大应助Arsenel采纳,获得10
刚刚
hi_traffic完成签到,获得积分10
1秒前
大可发布了新的文献求助10
1秒前
2秒前
wzc发布了新的文献求助10
2秒前
酷波er应助zxd采纳,获得10
2秒前
3秒前
future发布了新的文献求助10
3秒前
杭秋寒发布了新的文献求助10
3秒前
4秒前
eznesug完成签到,获得积分10
4秒前
香蕉觅云应助陈品琪采纳,获得10
5秒前
5秒前
5秒前
zzuzll完成签到,获得积分10
6秒前
LaTeXer应助1111111采纳,获得30
6秒前
飘逸焱完成签到 ,获得积分10
6秒前
棋士应助1111111采纳,获得10
6秒前
CodeCraft应助1111111采纳,获得10
7秒前
星辰大海应助无语的大门采纳,获得10
7秒前
完美世界应助冷艳的纸鹤采纳,获得10
7秒前
momo完成签到,获得积分10
7秒前
8秒前
orixero应助祥辉NCU采纳,获得30
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Zhi发布了新的文献求助10
10秒前
David完成签到 ,获得积分10
10秒前
体贴鹰完成签到 ,获得积分10
10秒前
11秒前
JeremyYuan发布了新的文献求助30
11秒前
HOAN应助林青青采纳,获得30
12秒前
12秒前
12秒前
蓝色斑马发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718285
求助须知:如何正确求助?哪些是违规求助? 5251746
关于积分的说明 15285174
捐赠科研通 4868514
什么是DOI,文献DOI怎么找? 2614220
邀请新用户注册赠送积分活动 1564054
关于科研通互助平台的介绍 1521548