已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using google street view to reveal environmental justice: Assessing public perceived walkability in macroscale city

可行走性 建筑环境 社会经济地位 地理 环境正义 环境卫生 人口 医学 政治学 土木工程 工程类 法学
作者
Yi Lü,Hui‐Mei Chen
出处
期刊:Landscape and Urban Planning [Elsevier]
卷期号:244: 104995-104995 被引量:34
标识
DOI:10.1016/j.landurbplan.2023.104995
摘要

Walkability is an important issue in urban planning equity, which is primarily influenced by the objective environment and subjective perception. However, assessing the objective environment of the city on a large scale or obtaining the general public's perceptual evaluation of the urban environment with less cost is challenging. This research adopted two-stage studies to identify the relationship between streetscape elements and perceived walkability using Google Street View images with machine learning in Taipei City. In Study I, the Zhongzheng District in Taipei was selected as the sample area and successfully developed a walkability prediction model that integrates street elements segmented by semantic segmentation technique, with the perceived walkability. Roads and terrains were identified as key predictors that affect perceived walkability in this random forest regression model. Based on this prediction model, we expanded the walkability assessment citywide with semantic segmentation in Study II, and the citywide walkability maps were produced. Accordingly, the socio-spatial equality of walkability was further audited. We further adopted spatial linear regression analysis to examine the relationship between neighborhood socioeconomic indicators (individual income, elderly %, and less educated %) and perceived walkability. Through the geographically weighted regression analysis, the results indicated that situated in peripheral areas were more sensitive to local socioeconomic indicators. This highlights the significant presence of social-spatial vulnerability in the walkability of Taipei City. Our research demonstrated the feasibility of using machine learning to audit urban socio-spatial justice from urban micro-to-macro scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
longlong完成签到,获得积分20
3秒前
3秒前
Zyc发布了新的文献求助10
6秒前
QQQ发布了新的文献求助10
6秒前
7秒前
网络复杂发布了新的文献求助10
8秒前
大模型应助专注乐荷采纳,获得10
9秒前
9秒前
思源应助友好的鱼鱼采纳,获得10
10秒前
开心凌柏完成签到,获得积分10
11秒前
赫贞发布了新的文献求助10
13秒前
15秒前
yy发布了新的文献求助10
16秒前
17秒前
斯文败类应助Zyc采纳,获得10
17秒前
shjyang完成签到,获得积分0
17秒前
18秒前
吉里巴完成签到,获得积分10
19秒前
19秒前
igigi完成签到,获得积分20
20秒前
20秒前
紫涵妍妍妈妈完成签到,获得积分10
21秒前
乐生发布了新的文献求助20
21秒前
寒冷的断秋完成签到,获得积分10
21秒前
21秒前
Hanqi完成签到 ,获得积分10
22秒前
开心凌柏发布了新的文献求助10
22秒前
CipherSage应助迷路的睫毛膏采纳,获得10
22秒前
QQQ完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
27秒前
科目三应助科研通管家采纳,获得10
27秒前
Lucas应助科研通管家采纳,获得50
27秒前
科目三应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663851
求助须知:如何正确求助?哪些是违规求助? 4853565
关于积分的说明 15106071
捐赠科研通 4822104
什么是DOI,文献DOI怎么找? 2581216
邀请新用户注册赠送积分活动 1535412
关于科研通互助平台的介绍 1493740