Using google street view to reveal environmental justice: Assessing public perceived walkability in macroscale city

可行走性 建筑环境 社会经济地位 地理 环境正义 环境卫生 人口 医学 政治学 土木工程 工程类 法学
作者
Yi Lü,Hui‐Mei Chen
出处
期刊:Landscape and Urban Planning [Elsevier]
卷期号:244: 104995-104995 被引量:34
标识
DOI:10.1016/j.landurbplan.2023.104995
摘要

Walkability is an important issue in urban planning equity, which is primarily influenced by the objective environment and subjective perception. However, assessing the objective environment of the city on a large scale or obtaining the general public's perceptual evaluation of the urban environment with less cost is challenging. This research adopted two-stage studies to identify the relationship between streetscape elements and perceived walkability using Google Street View images with machine learning in Taipei City. In Study I, the Zhongzheng District in Taipei was selected as the sample area and successfully developed a walkability prediction model that integrates street elements segmented by semantic segmentation technique, with the perceived walkability. Roads and terrains were identified as key predictors that affect perceived walkability in this random forest regression model. Based on this prediction model, we expanded the walkability assessment citywide with semantic segmentation in Study II, and the citywide walkability maps were produced. Accordingly, the socio-spatial equality of walkability was further audited. We further adopted spatial linear regression analysis to examine the relationship between neighborhood socioeconomic indicators (individual income, elderly %, and less educated %) and perceived walkability. Through the geographically weighted regression analysis, the results indicated that situated in peripheral areas were more sensitive to local socioeconomic indicators. This highlights the significant presence of social-spatial vulnerability in the walkability of Taipei City. Our research demonstrated the feasibility of using machine learning to audit urban socio-spatial justice from urban micro-to-macro scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经寄真发布了新的文献求助10
刚刚
apathy完成签到,获得积分10
1秒前
852应助万物可爱采纳,获得10
2秒前
Moonkiss发布了新的文献求助10
2秒前
上官若男应助哈皮采纳,获得10
2秒前
3秒前
曹志毅发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
treasure发布了新的文献求助20
3秒前
4秒前
幻翎发布了新的文献求助30
4秒前
热情的笑白完成签到,获得积分10
4秒前
张不张完成签到,获得积分10
5秒前
lu完成签到,获得积分10
6秒前
Fanzhijuan完成签到,获得积分10
6秒前
6秒前
李健的小迷弟应助123321采纳,获得10
7秒前
一只半夏发布了新的文献求助10
8秒前
曹志毅完成签到,获得积分10
8秒前
8秒前
mly发布了新的文献求助10
8秒前
烟花应助熊22采纳,获得10
8秒前
Owen应助黄油可颂采纳,获得10
8秒前
今后应助tuiiao采纳,获得10
9秒前
asdfzxcv应助东东采纳,获得10
9秒前
10秒前
科研通AI6应助999z采纳,获得30
10秒前
10秒前
小透明举报一本万利求助涉嫌违规
11秒前
HIBARA发布了新的文献求助10
11秒前
12秒前
12秒前
怕孤单的大米完成签到,获得积分10
12秒前
着急的棉花糖完成签到,获得积分20
13秒前
EwhenQ发布了新的文献求助10
14秒前
jane完成签到 ,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656732
求助须知:如何正确求助?哪些是违规求助? 4805515
关于积分的说明 15077205
捐赠科研通 4814935
什么是DOI,文献DOI怎么找? 2576202
邀请新用户注册赠送积分活动 1531417
关于科研通互助平台的介绍 1490012