Using google street view to reveal environmental justice: Assessing public perceived walkability in macroscale city

可行走性 建筑环境 社会经济地位 地理 环境正义 环境卫生 人口 医学 政治学 土木工程 工程类 法学
作者
Yi Lü,Hui‐Mei Chen
出处
期刊:Landscape and Urban Planning [Elsevier BV]
卷期号:244: 104995-104995 被引量:20
标识
DOI:10.1016/j.landurbplan.2023.104995
摘要

Walkability is an important issue in urban planning equity, which is primarily influenced by the objective environment and subjective perception. However, assessing the objective environment of the city on a large scale or obtaining the general public's perceptual evaluation of the urban environment with less cost is challenging. This research adopted two-stage studies to identify the relationship between streetscape elements and perceived walkability using Google Street View images with machine learning in Taipei City. In Study I, the Zhongzheng District in Taipei was selected as the sample area and successfully developed a walkability prediction model that integrates street elements segmented by semantic segmentation technique, with the perceived walkability. Roads and terrains were identified as key predictors that affect perceived walkability in this random forest regression model. Based on this prediction model, we expanded the walkability assessment citywide with semantic segmentation in Study II, and the citywide walkability maps were produced. Accordingly, the socio-spatial equality of walkability was further audited. We further adopted spatial linear regression analysis to examine the relationship between neighborhood socioeconomic indicators (individual income, elderly %, and less educated %) and perceived walkability. Through the geographically weighted regression analysis, the results indicated that situated in peripheral areas were more sensitive to local socioeconomic indicators. This highlights the significant presence of social-spatial vulnerability in the walkability of Taipei City. Our research demonstrated the feasibility of using machine learning to audit urban socio-spatial justice from urban micro-to-macro scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅连虎发布了新的文献求助30
刚刚
魅猫使者完成签到,获得积分10
2秒前
4秒前
hr发布了新的文献求助10
4秒前
烟花应助个性的汲采纳,获得10
6秒前
lzz发布了新的文献求助10
6秒前
青天白日完成签到,获得积分10
7秒前
yeayeayea完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
秦摆烂发布了新的文献求助10
8秒前
知还发布了新的文献求助10
9秒前
CCCCCL完成签到,获得积分10
9秒前
精灵大夫发布了新的文献求助10
9秒前
天青色等烟雨完成签到 ,获得积分10
10秒前
廖天佑完成签到,获得积分0
13秒前
张先生完成签到 ,获得积分10
16秒前
知还完成签到,获得积分10
17秒前
17秒前
安安完成签到 ,获得积分10
18秒前
19秒前
大方泥猴桃完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
123发布了新的文献求助10
23秒前
25秒前
26秒前
28秒前
77发布了新的文献求助10
28秒前
30秒前
霸气凝云完成签到 ,获得积分10
31秒前
Y.J发布了新的文献求助10
33秒前
ming发布了新的文献求助10
33秒前
看看看完成签到,获得积分10
33秒前
34秒前
34秒前
77完成签到,获得积分10
34秒前
温暖的绮完成签到,获得积分10
35秒前
Lionnn完成签到 ,获得积分10
36秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150