Using google street view to reveal environmental justice: Assessing public perceived walkability in macroscale city

可行走性 建筑环境 社会经济地位 地理 环境正义 环境卫生 人口 医学 政治学 土木工程 工程类 法学
作者
Yi Lü,Hui‐Mei Chen
出处
期刊:Landscape and Urban Planning [Elsevier]
卷期号:244: 104995-104995 被引量:4
标识
DOI:10.1016/j.landurbplan.2023.104995
摘要

Walkability is an important issue in urban planning equity, which is primarily influenced by the objective environment and subjective perception. However, assessing the objective environment of the city on a large scale or obtaining the general public's perceptual evaluation of the urban environment with less cost is challenging. This research adopted two-stage studies to identify the relationship between streetscape elements and perceived walkability using Google Street View images with machine learning in Taipei City. In Study I, the Zhongzheng District in Taipei was selected as the sample area and successfully developed a walkability prediction model that integrates street elements segmented by semantic segmentation technique, with the perceived walkability. Roads and terrains were identified as key predictors that affect perceived walkability in this random forest regression model. Based on this prediction model, we expanded the walkability assessment citywide with semantic segmentation in Study II, and the citywide walkability maps were produced. Accordingly, the socio-spatial equality of walkability was further audited. We further adopted spatial linear regression analysis to examine the relationship between neighborhood socioeconomic indicators (individual income, elderly %, and less educated %) and perceived walkability. Through the geographically weighted regression analysis, the results indicated that situated in peripheral areas were more sensitive to local socioeconomic indicators. This highlights the significant presence of social-spatial vulnerability in the walkability of Taipei City. Our research demonstrated the feasibility of using machine learning to audit urban socio-spatial justice from urban micro-to-macro scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麻花精发布了新的文献求助10
刚刚
6666完成签到,获得积分10
刚刚
刚刚
炸了的完成签到,获得积分20
1秒前
暮霭沉沉应助ssss采纳,获得10
1秒前
善良书蕾发布了新的文献求助10
1秒前
2秒前
未来的院士完成签到 ,获得积分20
2秒前
可爱的函函应助wdn0411采纳,获得10
2秒前
老鼠爱吃fish完成签到,获得积分10
2秒前
在水一方应助王振123654采纳,获得10
3秒前
panx完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
tfming完成签到,获得积分10
4秒前
HEIKU完成签到,获得积分0
4秒前
5秒前
5秒前
穿山甲先生完成签到,获得积分10
6秒前
LU发布了新的文献求助10
6秒前
7秒前
所所应助ji采纳,获得10
7秒前
Albertxkcj发布了新的文献求助10
7秒前
柳听白完成签到,获得积分10
7秒前
汉堡包应助mu采纳,获得10
7秒前
7秒前
zhang发布了新的文献求助10
8秒前
8秒前
ZJU完成签到,获得积分20
8秒前
bluesmile完成签到,获得积分10
8秒前
yyymmma发布了新的文献求助10
9秒前
仇悦完成签到,获得积分10
10秒前
二行发布了新的文献求助10
10秒前
蜡笔小新完成签到,获得积分10
10秒前
LabRat发布了新的文献求助10
10秒前
nipanpan完成签到,获得积分10
10秒前
时光完成签到,获得积分10
11秒前
ZJU发布了新的文献求助10
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134447
求助须知:如何正确求助?哪些是违规求助? 2785391
关于积分的说明 7771957
捐赠科研通 2441024
什么是DOI,文献DOI怎么找? 1297678
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813