Using google street view to reveal environmental justice: Assessing public perceived walkability in macroscale city

可行走性 建筑环境 社会经济地位 地理 环境正义 环境卫生 人口 医学 政治学 土木工程 工程类 法学
作者
Yi Lü,Hui‐Mei Chen
出处
期刊:Landscape and Urban Planning [Elsevier]
卷期号:244: 104995-104995 被引量:34
标识
DOI:10.1016/j.landurbplan.2023.104995
摘要

Walkability is an important issue in urban planning equity, which is primarily influenced by the objective environment and subjective perception. However, assessing the objective environment of the city on a large scale or obtaining the general public's perceptual evaluation of the urban environment with less cost is challenging. This research adopted two-stage studies to identify the relationship between streetscape elements and perceived walkability using Google Street View images with machine learning in Taipei City. In Study I, the Zhongzheng District in Taipei was selected as the sample area and successfully developed a walkability prediction model that integrates street elements segmented by semantic segmentation technique, with the perceived walkability. Roads and terrains were identified as key predictors that affect perceived walkability in this random forest regression model. Based on this prediction model, we expanded the walkability assessment citywide with semantic segmentation in Study II, and the citywide walkability maps were produced. Accordingly, the socio-spatial equality of walkability was further audited. We further adopted spatial linear regression analysis to examine the relationship between neighborhood socioeconomic indicators (individual income, elderly %, and less educated %) and perceived walkability. Through the geographically weighted regression analysis, the results indicated that situated in peripheral areas were more sensitive to local socioeconomic indicators. This highlights the significant presence of social-spatial vulnerability in the walkability of Taipei City. Our research demonstrated the feasibility of using machine learning to audit urban socio-spatial justice from urban micro-to-macro scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
romeo发布了新的文献求助10
1秒前
yxsxm完成签到,获得积分10
2秒前
迪歪歪应助阳光热狗采纳,获得20
2秒前
2秒前
3秒前
3秒前
3秒前
归尘发布了新的文献求助10
3秒前
stuffmatter应助茜茜采纳,获得50
3秒前
慕青应助过时的孤晴采纳,获得10
3秒前
安安安关注了科研通微信公众号
4秒前
5秒前
科研通AI6应助孙树人采纳,获得10
6秒前
6秒前
yxsxm发布了新的文献求助10
7秒前
romeo发布了新的文献求助10
7秒前
7秒前
7秒前
abb先生发布了新的文献求助10
8秒前
Owen应助王王采纳,获得10
8秒前
9秒前
药007完成签到,获得积分10
9秒前
Kai发布了新的文献求助10
9秒前
10秒前
1234发布了新的文献求助10
11秒前
彩色的紫南完成签到,获得积分10
11秒前
化学发布了新的文献求助10
11秒前
12秒前
妮妮完成签到 ,获得积分10
13秒前
13秒前
淡淡大山发布了新的文献求助10
14秒前
romeo发布了新的文献求助10
15秒前
15秒前
欢喜雪瑶发布了新的文献求助10
15秒前
15秒前
16秒前
benbengouj发布了新的文献求助10
16秒前
三月兔发布了新的文献求助10
16秒前
16秒前
lalala发布了新的文献求助10
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774