四氢嘧啶
废水
化学
盐度
环境化学
氮气
硝化作用
流出物
有机质
渗透调节剂
环境工程
生物
生物化学
生态学
环境科学
脯氨酸
有机化学
氨基酸
作者
Minglei Huang,Huining Zhang,Min Ren,Bixiao Ji,Keying Sun
标识
DOI:10.1016/j.scitotenv.2023.169694
摘要
In contrast to nitrification-denitrification microorganisms that convert ammonia nitrogen in hypersaline wastewater into nitrogen for discharge, this research utilizes sludge enriched with salt-tolerant assimilation bacteria (STAB) to assimilate organic matter and ammonia nitrogen in hypersaline wastewater into ectoine - a biomass with high economic value and resistance to external osmotic pressure. The study investigates the relationship between the synthesis of ectoine and nitrogen removal efficiency of STAB sludge in three sequencing batch reactors (SBR) operated at different salinities (50, 75, and 100 g/L) and organic matter concentrations. The research reveals that, under low concentration carbon sources (TOC/N = 4, NH4+-N = 60 mg/L), the ammonia nitrogen removal efficiency of SBR reactors increased by 14.51 % and 17.25 % within 5 d and 2 d, respectively, when salinity increased from 50 g/L to 75 g/L and 100 g/L. Under high concentration carbon sources (TOC/N = 8, NH4+-N = 60 mg/L), the ammonia nitrogen removal efficiency of STAB sludge in the three reactors stabilized at 80.20 %, 76.71 %, and 72.87 %, and the total nitrogen removal efficiency was finally stabilized at 80.47 %, 73.15 %, and 65.53 %, respectively. The nitrogen removal performance by ammonium-assimilating of STAB sludge is more sustainable under low salinity, while it is more short-term explosive under high salinity. Moreover, the intracellular ectoine concentration of STAB sludge was found to be related to this behavior. Empirical formulas confirm that STAB sludge synthesizes ectoine from nutrients in wastewater through assimilation, and intracellular ectoine has a threshold defect (150 mg/gVss). The ectoine metabolism pathways of STAB sludge was constructed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). The ammonia nitrogen in sewage is converted into glutamic acid under the action of assimilation genes. It then undergoes a tricarboxylic acid cycle to synthesize the crucial precursor of ectoine - aspartic acid. Subsequently, ectoine is produced through ectoine synthase. The findings suggest that when the synthesis of intracellular ectoine reaches saturation, it inhibits the continuous nitrogen removal performance of STAB sludge under high salinity. STAB sludge does not actively release ectoine through channels under stable external osmotic pressure.
科研通智能强力驱动
Strongly Powered by AbleSci AI