动态时间归整
子序列
系列(地层学)
师(数学)
计算机科学
转化(遗传学)
模式识别(心理学)
相似性(几何)
窗口(计算)
最长公共子序列
人工智能
时间序列
干扰(通信)
滑动窗口协议
班级(哲学)
数据挖掘
距离测量
算法
数学
机器学习
算术
电信
数学分析
古生物学
生物化学
化学
频道(广播)
图像(数学)
基因
有界函数
生物
操作系统
作者
Hao Xu,Ke Wang,Wenguang Sun,Mei Chen,Hui Li,Heng Zhao
出处
期刊:Communications in computer and information science
日期:2024-01-01
卷期号:: 94-111
标识
DOI:10.1007/978-981-99-9109-9_10
摘要
Time series classification (TSC) relies primarily on similarity or dissimilarity measurements. In numerous scenarios, classification accuracy can be improved by removing interference variables. DDTM is proposed, which investigates the changes in the distance between the category and the subsequence on time series to determine if the subsequence influences the determination of the category. The main idea consists of three steps. First, propose a window division strategy to compare the Dynamic Time Warping (DTW) distances between time series categories at different window positions. Next, capture the influence of class division by calculating the average distance under various windows and measure the efficiency of window position for class division using information gain. Finally, transform the series according to the information gain. The research shows that the proposed DDTM method achieves superior classification results.
科研通智能强力驱动
Strongly Powered by AbleSci AI