A Novel and Secured Email Classification and Emotion Detection using Hybrid Deep Neural Network

计算机科学 卷积神经网络 分类 人工智能 加密 随机森林 机器学习 分类器(UML) 人工神经网络 深度学习 循环神经网络 云计算 钥匙(锁) 数据挖掘 计算机安全 操作系统
作者
D. Parthiban,Mithileysh Sathiyanarayanan,Hugo Proença
出处
期刊:International journal of cognitive computing in engineering [Elsevier]
被引量:1
标识
DOI:10.1016/j.ijcce.2024.01.002
摘要

Compared to other social media data, email data differs from it in various topic-specific ways, including extensive replies, formal language, significant length disparities, high levels of anomalies, and indirect linkages. In this paper, the creation of a potent and computationally effective classifier to categorize spam and ham email documents is proposed. To assess and validate spam texts, this paper employs a variety of data mining-based classification approaches. On the benchmark Enron dataset, which is open to the public, tests were run. The final 7 Enron datasets were created by combining the six different types of Enron datasets that we had acquired. We preprocess the dataset at an early stage to exclude any useless phrases. This method falls under several categories, including Logistic Regression (LR), Convolutional Neural Networks (CNN), Random Forests (RF), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and suggested Deep Neural Networks (DNN). Using Bidirectional Long Short-Term Memory (BiLSTM), email documents may be screened for spam and labeled as such. In performance comparisons, DNN-BiLSTM outperforms other classifiers in terms of accuracy on all seven Enron datasets. In comparison to other machine learning classifiers, the findings demonstrate that DNN-BiLSTM and Convolutional Neural Networks can categorize spam with 96.39% and 98.69% accuracy, respectively. The report also covers the dangers of managing cloud data and the security problems that might occur. To safeguard data in the cloud while maintaining privacy, hybrid encryption is examined in this white paper. In the AES-Rabit hybrid encryption system, the symmetric session key exchange-based Rabit technique is combined with the benefits of the AES algorithm for faster data encryption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意的向日葵完成签到,获得积分10
刚刚
修利发布了新的文献求助10
1秒前
玫瑰遇上奶油完成签到,获得积分10
2秒前
非要叫我起个昵称完成签到,获得积分10
2秒前
YDSL发布了新的文献求助100
4秒前
迟迟发布了新的文献求助30
4秒前
曼曼完成签到,获得积分10
4秒前
Nathan完成签到,获得积分10
5秒前
汉堡包应助小叮当采纳,获得10
8秒前
闪闪的从彤完成签到 ,获得积分10
9秒前
温暖烨霖发布了新的文献求助10
10秒前
Ulquiorra完成签到 ,获得积分10
11秒前
科研通AI2S应助冯不可采纳,获得10
13秒前
13秒前
赘婿应助Fury采纳,获得10
14秒前
BCS完成签到,获得积分10
15秒前
15秒前
15秒前
涵Allen完成签到 ,获得积分10
16秒前
16秒前
超文献发布了新的文献求助10
16秒前
汤姆完成签到 ,获得积分10
18秒前
xiaowu关注了科研通微信公众号
18秒前
wangayting发布了新的文献求助30
18秒前
shanchuan发布了新的文献求助10
19秒前
ffchen111完成签到 ,获得积分10
19秒前
Desire发布了新的文献求助10
19秒前
香菜完成签到,获得积分10
20秒前
泠泠泠萘应助科研通管家采纳,获得10
20秒前
jackten发布了新的文献求助10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
zuiai发布了新的文献求助10
22秒前
cheunsor完成签到,获得积分10
22秒前
26秒前
27秒前
科研通AI2S应助junru采纳,获得10
29秒前
shanchuan完成签到,获得积分10
30秒前
33秒前
xiaowu发布了新的文献求助10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787054
捐赠科研通 2444818
什么是DOI,文献DOI怎么找? 1300043
科研通“疑难数据库(出版商)”最低求助积分说明 625784
版权声明 601023