Automatic reconstruction of geological reservoir models based on conditioning data constraints and BicycleGAN

条件作用 地质学 计算机科学 石油工程 统计 数学
作者
Wenyao Fan,Gang Liu,Qiyu Chen,Zhesi Cui,Hongfeng Fang,Genshen Chen,Xuechao Wu
标识
DOI:10.1016/j.geoen.2024.212690
摘要

For geological reservoir units with different sizes of pore spaces and relatively stronger anisotropic heterogeneities, Generative-Adversarial-Network-based (GAN) modeling methods can overcome limitation of numerical-simulation-based ones and support finely representation of nonstationary models. However, due to conditioning data weak constraints, GANs might ignore local detail features, with artifacts and noise during simulation. Some pre-processing strategies are strictly limited by the conditioning data distribution patterns, and corresponding processes should be updated frequently when new data are introduced, with relatively complicated operation. Therefore, the BicycleGAN framework was introduced in this paper. Based on bijective consistency between the latent vector and output, an image-to-image translation task with different dimensions is established, and multiple networks were coupled to realize finely representation of spatial attributes. Specifically, the mapping between conditioning data and output is established through the U-Net architecture, which not only local detail information is considered, but also reduce the impact of conditioning data distribution patterns. Meanwhile, the mapping between latent and actual test time distribution is also established by an encoding function to ensure simulation authenticities. In addition, a joint loss function combined with conditioning loss and prior loss is defined to ensure reconstruction accuracy of different facies types. Four kinds of categorical and continuous training images were selected to verify the network simulation performances. Results show that reconstruction accuracy for facies types of conditioning data is almost consistent with those of the references, keeping similarities in terms of spatial variability, connectivity, structural similarity, and facies type reproductions. Meanwhile, for the saved BicycleGAN, inputting different kinds of conditioning data once only, and a variety of simulations can be obtained rapidly, thereby realizing conditioning reconstruction of geological reservoir models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
浅浅完成签到,获得积分10
刚刚
燮老板的账号完成签到,获得积分10
3秒前
淡淡听寒完成签到 ,获得积分10
3秒前
阿达完成签到 ,获得积分10
6秒前
zm完成签到 ,获得积分10
7秒前
西山菩提完成签到,获得积分10
9秒前
帅气的藏鸟完成签到,获得积分10
9秒前
YingSuhui完成签到 ,获得积分10
10秒前
123567完成签到 ,获得积分10
12秒前
奋斗慕凝完成签到 ,获得积分10
14秒前
小明完成签到 ,获得积分10
14秒前
殷勤的紫槐发布了新的文献求助200
15秒前
我要读博士完成签到 ,获得积分10
15秒前
儒雅龙完成签到 ,获得积分10
18秒前
八八九九九1完成签到,获得积分10
18秒前
眭超阳完成签到 ,获得积分10
24秒前
共享精神应助xiaozhao123采纳,获得10
24秒前
111完成签到,获得积分10
26秒前
111发布了新的文献求助10
30秒前
满意的念柏完成签到,获得积分10
30秒前
鱼鱼完成签到 ,获得积分10
34秒前
lucorta完成签到,获得积分10
40秒前
hhh完成签到 ,获得积分10
49秒前
mojito完成签到 ,获得积分0
51秒前
森林木完成签到,获得积分10
52秒前
sweet雪儿妞妞完成签到 ,获得积分10
54秒前
乐观谷芹完成签到,获得积分10
57秒前
Heart_of_Stone完成签到 ,获得积分10
1分钟前
紧张的幻桃完成签到,获得积分10
1分钟前
自信南霜完成签到,获得积分10
1分钟前
lemonkim完成签到,获得积分10
1分钟前
junjie完成签到,获得积分10
1分钟前
龙6完成签到 ,获得积分10
1分钟前
Free完成签到,获得积分10
1分钟前
搜集达人应助小鲤鱼本鱼采纳,获得10
1分钟前
文静若血完成签到,获得积分10
1分钟前
1分钟前
yaya完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
萧萧应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481697
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559