Automatic reconstruction of geological reservoir models based on conditioning data constraints and BicycleGAN

条件作用 地质学 计算机科学 石油工程 统计 数学
作者
Wenyao Fan,Gang Liu,Qiyu Chen,Zhesi Cui,Hongfeng Fang,Genshen Chen,Xuechao Wu
标识
DOI:10.1016/j.geoen.2024.212690
摘要

For geological reservoir units with different sizes of pore spaces and relatively stronger anisotropic heterogeneities, Generative-Adversarial-Network-based (GAN) modeling methods can overcome limitation of numerical-simulation-based ones and support finely representation of nonstationary models. However, due to conditioning data weak constraints, GANs might ignore local detail features, with artifacts and noise during simulation. Some pre-processing strategies are strictly limited by the conditioning data distribution patterns, and corresponding processes should be updated frequently when new data are introduced, with relatively complicated operation. Therefore, the BicycleGAN framework was introduced in this paper. Based on bijective consistency between the latent vector and output, an image-to-image translation task with different dimensions is established, and multiple networks were coupled to realize finely representation of spatial attributes. Specifically, the mapping between conditioning data and output is established through the U-Net architecture, which not only local detail information is considered, but also reduce the impact of conditioning data distribution patterns. Meanwhile, the mapping between latent and actual test time distribution is also established by an encoding function to ensure simulation authenticities. In addition, a joint loss function combined with conditioning loss and prior loss is defined to ensure reconstruction accuracy of different facies types. Four kinds of categorical and continuous training images were selected to verify the network simulation performances. Results show that reconstruction accuracy for facies types of conditioning data is almost consistent with those of the references, keeping similarities in terms of spatial variability, connectivity, structural similarity, and facies type reproductions. Meanwhile, for the saved BicycleGAN, inputting different kinds of conditioning data once only, and a variety of simulations can be obtained rapidly, thereby realizing conditioning reconstruction of geological reservoir models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ethereal发布了新的文献求助10
刚刚
Akim应助研友_8RyzBZ采纳,获得10
刚刚
刚刚
科研通AI2S应助YXT981221采纳,获得10
刚刚
yyr完成签到,获得积分10
1秒前
可爱的函函应助Nicole采纳,获得10
2秒前
在水一方应助阳光采纳,获得10
2秒前
FashionBoy应助任性的老四采纳,获得10
3秒前
3秒前
开朗梦曼完成签到 ,获得积分20
3秒前
coollz发布了新的文献求助10
3秒前
3秒前
HuanhuanGao完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
Molecule完成签到,获得积分10
5秒前
脑洞疼应助yuyu采纳,获得10
6秒前
6秒前
7秒前
SciGPT应助shais采纳,获得10
7秒前
飘逸的山柏完成签到 ,获得积分10
7秒前
7秒前
8秒前
嘴嘴完成签到 ,获得积分20
9秒前
usr12完成签到,获得积分10
9秒前
wuxunxun2015发布了新的文献求助10
9秒前
望空发布了新的文献求助10
10秒前
脑洞疼应助快乐花卷采纳,获得10
11秒前
12秒前
12秒前
嘿嘿发布了新的文献求助10
12秒前
大大大漂亮完成签到 ,获得积分10
13秒前
13秒前
YXT981221发布了新的文献求助10
13秒前
13秒前
一一应助炙热的墨镜采纳,获得20
14秒前
14秒前
科研通AI6应助绿灯请通行采纳,获得30
14秒前
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781