亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic reconstruction of geological reservoir models based on conditioning data constraints and BicycleGAN

条件作用 地质学 计算机科学 石油工程 统计 数学
作者
Wenyao Fan,Gang Liu,Qiyu Chen,Zhesi Cui,Hongfeng Fang,Genshen Chen,Xuechao Wu
标识
DOI:10.1016/j.geoen.2024.212690
摘要

For geological reservoir units with different sizes of pore spaces and relatively stronger anisotropic heterogeneities, Generative-Adversarial-Network-based (GAN) modeling methods can overcome limitation of numerical-simulation-based ones and support finely representation of nonstationary models. However, due to conditioning data weak constraints, GANs might ignore local detail features, with artifacts and noise during simulation. Some pre-processing strategies are strictly limited by the conditioning data distribution patterns, and corresponding processes should be updated frequently when new data are introduced, with relatively complicated operation. Therefore, the BicycleGAN framework was introduced in this paper. Based on bijective consistency between the latent vector and output, an image-to-image translation task with different dimensions is established, and multiple networks were coupled to realize finely representation of spatial attributes. Specifically, the mapping between conditioning data and output is established through the U-Net architecture, which not only local detail information is considered, but also reduce the impact of conditioning data distribution patterns. Meanwhile, the mapping between latent and actual test time distribution is also established by an encoding function to ensure simulation authenticities. In addition, a joint loss function combined with conditioning loss and prior loss is defined to ensure reconstruction accuracy of different facies types. Four kinds of categorical and continuous training images were selected to verify the network simulation performances. Results show that reconstruction accuracy for facies types of conditioning data is almost consistent with those of the references, keeping similarities in terms of spatial variability, connectivity, structural similarity, and facies type reproductions. Meanwhile, for the saved BicycleGAN, inputting different kinds of conditioning data once only, and a variety of simulations can be obtained rapidly, thereby realizing conditioning reconstruction of geological reservoir models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菲菲鱼丸完成签到,获得积分10
12秒前
张志伟完成签到 ,获得积分10
14秒前
15秒前
汉堡包应助哈哈哈哈采纳,获得10
20秒前
善学以致用应助汤万天采纳,获得10
49秒前
53秒前
1分钟前
汤万天完成签到,获得积分10
1分钟前
1分钟前
汤万天发布了新的文献求助10
1分钟前
1分钟前
Orange应助豆乳米麻薯采纳,获得10
1分钟前
zzx完成签到 ,获得积分10
1分钟前
sdkabdrxt完成签到,获得积分10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
1分钟前
Raven发布了新的文献求助10
1分钟前
1分钟前
Raven完成签到,获得积分20
1分钟前
哈哈哈哈发布了新的文献求助10
1分钟前
2分钟前
赘婿应助哈哈哈哈采纳,获得20
2分钟前
2分钟前
log完成签到 ,获得积分10
2分钟前
打打应助哈哈哈哈呵呵采纳,获得10
2分钟前
caitlin完成签到 ,获得积分10
2分钟前
轮胎配方完成签到,获得积分10
2分钟前
老鸭梨发布了新的文献求助10
2分钟前
leyellows完成签到 ,获得积分10
2分钟前
哈哈哈哈完成签到 ,获得积分10
2分钟前
coolru完成签到,获得积分10
2分钟前
2分钟前
3分钟前
狂野傲南发布了新的文献求助10
3分钟前
YY发布了新的文献求助10
3分钟前
SciGPT应助狂野傲南采纳,获得10
3分钟前
cach完成签到,获得积分10
3分钟前
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162300
求助须知:如何正确求助?哪些是违规求助? 2813318
关于积分的说明 7899633
捐赠科研通 2472677
什么是DOI,文献DOI怎么找? 1316507
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142