Automatic reconstruction of geological reservoir models based on conditioning data constraints and BicycleGAN

条件作用 地质学 计算机科学 石油工程 统计 数学
作者
Wenyao Fan,Gang Liu,Qiyu Chen,Zhesi Cui,Hongfeng Fang,Genshen Chen,Xuechao Wu
标识
DOI:10.1016/j.geoen.2024.212690
摘要

For geological reservoir units with different sizes of pore spaces and relatively stronger anisotropic heterogeneities, Generative-Adversarial-Network-based (GAN) modeling methods can overcome limitation of numerical-simulation-based ones and support finely representation of nonstationary models. However, due to conditioning data weak constraints, GANs might ignore local detail features, with artifacts and noise during simulation. Some pre-processing strategies are strictly limited by the conditioning data distribution patterns, and corresponding processes should be updated frequently when new data are introduced, with relatively complicated operation. Therefore, the BicycleGAN framework was introduced in this paper. Based on bijective consistency between the latent vector and output, an image-to-image translation task with different dimensions is established, and multiple networks were coupled to realize finely representation of spatial attributes. Specifically, the mapping between conditioning data and output is established through the U-Net architecture, which not only local detail information is considered, but also reduce the impact of conditioning data distribution patterns. Meanwhile, the mapping between latent and actual test time distribution is also established by an encoding function to ensure simulation authenticities. In addition, a joint loss function combined with conditioning loss and prior loss is defined to ensure reconstruction accuracy of different facies types. Four kinds of categorical and continuous training images were selected to verify the network simulation performances. Results show that reconstruction accuracy for facies types of conditioning data is almost consistent with those of the references, keeping similarities in terms of spatial variability, connectivity, structural similarity, and facies type reproductions. Meanwhile, for the saved BicycleGAN, inputting different kinds of conditioning data once only, and a variety of simulations can be obtained rapidly, thereby realizing conditioning reconstruction of geological reservoir models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
困就睡觉完成签到 ,获得积分10
刚刚
淡如水发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
5秒前
5秒前
5秒前
6秒前
如意的小丸子完成签到,获得积分20
6秒前
6秒前
Selena完成签到 ,获得积分20
7秒前
思源应助Passion采纳,获得10
7秒前
7秒前
8秒前
9秒前
yckbz完成签到,获得积分10
9秒前
猛磕CO2的小生完成签到,获得积分10
9秒前
含糊的茹妖完成签到 ,获得积分10
10秒前
天才玩家H发布了新的文献求助10
11秒前
超级白玉发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
忧伤的渊思完成签到,获得积分10
12秒前
123456发布了新的文献求助10
13秒前
FashionBoy应助clouds采纳,获得10
13秒前
负数完成签到,获得积分10
15秒前
dyd发布了新的文献求助10
15秒前
Orange应助阿正嗖啪采纳,获得10
15秒前
威武的雁易完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
17秒前
17秒前
机智的天蓉完成签到 ,获得积分10
17秒前
18秒前
18秒前
Passion完成签到,获得积分10
18秒前
山山以川发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488