Automatic reconstruction of geological reservoir models based on conditioning data constraints and BicycleGAN

条件作用 地质学 计算机科学 石油工程 统计 数学
作者
Wenyao Fan,Gang Liu,Qiyu Chen,Zhesi Cui,Hongfeng Fang,Genshen Chen,Xuechao Wu
标识
DOI:10.1016/j.geoen.2024.212690
摘要

For geological reservoir units with different sizes of pore spaces and relatively stronger anisotropic heterogeneities, Generative-Adversarial-Network-based (GAN) modeling methods can overcome limitation of numerical-simulation-based ones and support finely representation of nonstationary models. However, due to conditioning data weak constraints, GANs might ignore local detail features, with artifacts and noise during simulation. Some pre-processing strategies are strictly limited by the conditioning data distribution patterns, and corresponding processes should be updated frequently when new data are introduced, with relatively complicated operation. Therefore, the BicycleGAN framework was introduced in this paper. Based on bijective consistency between the latent vector and output, an image-to-image translation task with different dimensions is established, and multiple networks were coupled to realize finely representation of spatial attributes. Specifically, the mapping between conditioning data and output is established through the U-Net architecture, which not only local detail information is considered, but also reduce the impact of conditioning data distribution patterns. Meanwhile, the mapping between latent and actual test time distribution is also established by an encoding function to ensure simulation authenticities. In addition, a joint loss function combined with conditioning loss and prior loss is defined to ensure reconstruction accuracy of different facies types. Four kinds of categorical and continuous training images were selected to verify the network simulation performances. Results show that reconstruction accuracy for facies types of conditioning data is almost consistent with those of the references, keeping similarities in terms of spatial variability, connectivity, structural similarity, and facies type reproductions. Meanwhile, for the saved BicycleGAN, inputting different kinds of conditioning data once only, and a variety of simulations can be obtained rapidly, thereby realizing conditioning reconstruction of geological reservoir models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光刺眼发布了新的文献求助10
刚刚
白月当归完成签到,获得积分10
1秒前
1秒前
ly完成签到,获得积分10
1秒前
调皮的萃完成签到,获得积分10
1秒前
dracovu完成签到,获得积分10
1秒前
感动城发布了新的文献求助10
1秒前
科研通AI6应助i7采纳,获得10
2秒前
无花果应助dudu采纳,获得30
3秒前
火星上秋尽完成签到,获得积分10
4秒前
4秒前
4秒前
太阳发布了新的文献求助10
4秒前
gggggggbao完成签到,获得积分10
5秒前
加贺发布了新的文献求助10
5秒前
6秒前
旷意发布了新的文献求助10
6秒前
Lexine发布了新的文献求助10
7秒前
7秒前
jeil完成签到,获得积分10
8秒前
鱼鱼子999发布了新的文献求助10
8秒前
AamirAli完成签到,获得积分10
9秒前
在水一方应助太阳采纳,获得10
9秒前
田様应助gggggggbao采纳,获得10
9秒前
10秒前
简单的鲜花完成签到,获得积分10
10秒前
科研通AI6应助lily采纳,获得10
10秒前
杨锐完成签到,获得积分10
11秒前
风趣从霜完成签到,获得积分10
11秒前
从容的完成签到 ,获得积分10
12秒前
13秒前
13秒前
ssy发布了新的文献求助10
13秒前
感动城完成签到,获得积分10
14秒前
儒雅的小懒虫完成签到 ,获得积分10
16秒前
mika910完成签到 ,获得积分10
16秒前
16秒前
17秒前
ybouo完成签到,获得积分10
18秒前
122456完成签到,获得积分10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262