已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic reconstruction of geological reservoir models based on conditioning data constraints and BicycleGAN

条件作用 地质学 计算机科学 石油工程 统计 数学
作者
Wenyao Fan,Gang Liu,Qiyu Chen,Zhesi Cui,Hongfeng Fang,Genshen Chen,Xuechao Wu
标识
DOI:10.1016/j.geoen.2024.212690
摘要

For geological reservoir units with different sizes of pore spaces and relatively stronger anisotropic heterogeneities, Generative-Adversarial-Network-based (GAN) modeling methods can overcome limitation of numerical-simulation-based ones and support finely representation of nonstationary models. However, due to conditioning data weak constraints, GANs might ignore local detail features, with artifacts and noise during simulation. Some pre-processing strategies are strictly limited by the conditioning data distribution patterns, and corresponding processes should be updated frequently when new data are introduced, with relatively complicated operation. Therefore, the BicycleGAN framework was introduced in this paper. Based on bijective consistency between the latent vector and output, an image-to-image translation task with different dimensions is established, and multiple networks were coupled to realize finely representation of spatial attributes. Specifically, the mapping between conditioning data and output is established through the U-Net architecture, which not only local detail information is considered, but also reduce the impact of conditioning data distribution patterns. Meanwhile, the mapping between latent and actual test time distribution is also established by an encoding function to ensure simulation authenticities. In addition, a joint loss function combined with conditioning loss and prior loss is defined to ensure reconstruction accuracy of different facies types. Four kinds of categorical and continuous training images were selected to verify the network simulation performances. Results show that reconstruction accuracy for facies types of conditioning data is almost consistent with those of the references, keeping similarities in terms of spatial variability, connectivity, structural similarity, and facies type reproductions. Meanwhile, for the saved BicycleGAN, inputting different kinds of conditioning data once only, and a variety of simulations can be obtained rapidly, thereby realizing conditioning reconstruction of geological reservoir models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duohao2023发布了新的文献求助30
1秒前
Zhang完成签到 ,获得积分10
3秒前
Benjamin完成签到 ,获得积分10
4秒前
yx_cheng应助蓝天白云采纳,获得10
4秒前
max发布了新的文献求助10
5秒前
7秒前
struggling2026完成签到 ,获得积分10
8秒前
breeze完成签到,获得积分10
13秒前
13秒前
优雅夕阳完成签到 ,获得积分10
14秒前
奋斗的小笼包完成签到 ,获得积分10
17秒前
儿学化学打断腿完成签到,获得积分10
18秒前
18秒前
21秒前
hh完成签到 ,获得积分10
25秒前
元宝团子完成签到,获得积分10
28秒前
Bearbiscuit完成签到,获得积分10
28秒前
28秒前
张元东完成签到 ,获得积分10
32秒前
33秒前
34秒前
34秒前
36秒前
37秒前
anthea完成签到 ,获得积分10
37秒前
一直向前发布了新的文献求助10
38秒前
含糊的尔槐完成签到,获得积分10
39秒前
lizigongzhu发布了新的文献求助10
41秒前
41秒前
苏和杨发布了新的文献求助10
42秒前
42秒前
44秒前
45秒前
CodeCraft应助科研通管家采纳,获得10
46秒前
JamesPei应助科研通管家采纳,获得10
46秒前
完美世界应助科研通管家采纳,获得10
46秒前
彭于晏应助科研通管家采纳,获得10
46秒前
汉堡包应助科研通管家采纳,获得10
46秒前
星辰大海应助科研通管家采纳,获得10
46秒前
kai chen完成签到 ,获得积分0
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989957
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256000
捐赠科研通 3270880
什么是DOI,文献DOI怎么找? 1805070
邀请新用户注册赠送积分活动 882252
科研通“疑难数据库(出版商)”最低求助积分说明 809216