亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic reconstruction of geological reservoir models based on conditioning data constraints and BicycleGAN

条件作用 地质学 计算机科学 石油工程 统计 数学
作者
Wenyao Fan,Gang Liu,Qiyu Chen,Zhesi Cui,Hongfeng Fang,Genshen Chen,Xuechao Wu
标识
DOI:10.1016/j.geoen.2024.212690
摘要

For geological reservoir units with different sizes of pore spaces and relatively stronger anisotropic heterogeneities, Generative-Adversarial-Network-based (GAN) modeling methods can overcome limitation of numerical-simulation-based ones and support finely representation of nonstationary models. However, due to conditioning data weak constraints, GANs might ignore local detail features, with artifacts and noise during simulation. Some pre-processing strategies are strictly limited by the conditioning data distribution patterns, and corresponding processes should be updated frequently when new data are introduced, with relatively complicated operation. Therefore, the BicycleGAN framework was introduced in this paper. Based on bijective consistency between the latent vector and output, an image-to-image translation task with different dimensions is established, and multiple networks were coupled to realize finely representation of spatial attributes. Specifically, the mapping between conditioning data and output is established through the U-Net architecture, which not only local detail information is considered, but also reduce the impact of conditioning data distribution patterns. Meanwhile, the mapping between latent and actual test time distribution is also established by an encoding function to ensure simulation authenticities. In addition, a joint loss function combined with conditioning loss and prior loss is defined to ensure reconstruction accuracy of different facies types. Four kinds of categorical and continuous training images were selected to verify the network simulation performances. Results show that reconstruction accuracy for facies types of conditioning data is almost consistent with those of the references, keeping similarities in terms of spatial variability, connectivity, structural similarity, and facies type reproductions. Meanwhile, for the saved BicycleGAN, inputting different kinds of conditioning data once only, and a variety of simulations can be obtained rapidly, thereby realizing conditioning reconstruction of geological reservoir models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
MINGMING发布了新的文献求助10
10秒前
gdpu_omics完成签到,获得积分10
11秒前
14秒前
盛夏如花发布了新的文献求助30
15秒前
啦啦啦啦发布了新的文献求助10
19秒前
21秒前
26秒前
31秒前
小马甲应助isjj采纳,获得10
35秒前
岚岚发布了新的文献求助10
36秒前
Regine完成签到 ,获得积分10
38秒前
40秒前
isjj完成签到,获得积分10
45秒前
MINGMING完成签到,获得积分10
46秒前
我是老大应助Regine采纳,获得10
47秒前
47秒前
Xhnz发布了新的文献求助10
47秒前
情怀应助啦啦啦啦采纳,获得10
48秒前
赘婿应助Re采纳,获得10
48秒前
岚岚完成签到,获得积分10
52秒前
53秒前
无花果应助盛夏如花采纳,获得10
56秒前
ding应助hyhyhyhy采纳,获得10
58秒前
Re发布了新的文献求助10
59秒前
原子发布了新的文献求助10
1分钟前
毒蝎King完成签到 ,获得积分10
1分钟前
ZXneuro完成签到,获得积分10
1分钟前
1分钟前
原子完成签到,获得积分10
1分钟前
骨科小李发布了新的文献求助10
1分钟前
遥感小虫完成签到,获得积分10
1分钟前
1分钟前
hyhyhyhy发布了新的文献求助10
1分钟前
1分钟前
zqq完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
顺心的傲柔完成签到,获得积分10
1分钟前
2分钟前
6w6发布了新的文献求助10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644619
求助须知:如何正确求助?哪些是违规求助? 4764721
关于积分的说明 15025369
捐赠科研通 4802978
什么是DOI,文献DOI怎么找? 2567787
邀请新用户注册赠送积分活动 1525410
关于科研通互助平台的介绍 1484909