Automatic reconstruction of geological reservoir models based on conditioning data constraints and BicycleGAN

条件作用 地质学 计算机科学 石油工程 统计 数学
作者
Wenyao Fan,Gang Liu,Qiyu Chen,Zhesi Cui,Hongfeng Fang,Genshen Chen,Xuechao Wu
标识
DOI:10.1016/j.geoen.2024.212690
摘要

For geological reservoir units with different sizes of pore spaces and relatively stronger anisotropic heterogeneities, Generative-Adversarial-Network-based (GAN) modeling methods can overcome limitation of numerical-simulation-based ones and support finely representation of nonstationary models. However, due to conditioning data weak constraints, GANs might ignore local detail features, with artifacts and noise during simulation. Some pre-processing strategies are strictly limited by the conditioning data distribution patterns, and corresponding processes should be updated frequently when new data are introduced, with relatively complicated operation. Therefore, the BicycleGAN framework was introduced in this paper. Based on bijective consistency between the latent vector and output, an image-to-image translation task with different dimensions is established, and multiple networks were coupled to realize finely representation of spatial attributes. Specifically, the mapping between conditioning data and output is established through the U-Net architecture, which not only local detail information is considered, but also reduce the impact of conditioning data distribution patterns. Meanwhile, the mapping between latent and actual test time distribution is also established by an encoding function to ensure simulation authenticities. In addition, a joint loss function combined with conditioning loss and prior loss is defined to ensure reconstruction accuracy of different facies types. Four kinds of categorical and continuous training images were selected to verify the network simulation performances. Results show that reconstruction accuracy for facies types of conditioning data is almost consistent with those of the references, keeping similarities in terms of spatial variability, connectivity, structural similarity, and facies type reproductions. Meanwhile, for the saved BicycleGAN, inputting different kinds of conditioning data once only, and a variety of simulations can be obtained rapidly, thereby realizing conditioning reconstruction of geological reservoir models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江恋完成签到,获得积分10
刚刚
GGBOND发布了新的文献求助10
3秒前
5秒前
hhhblabla应助yyyyyyy111采纳,获得10
7秒前
哈哈发布了新的文献求助10
8秒前
13秒前
15秒前
背后初南完成签到,获得积分10
16秒前
神勇馒头完成签到,获得积分10
16秒前
GGBOND发布了新的文献求助10
17秒前
17秒前
18秒前
以戈完成签到,获得积分10
20秒前
22秒前
泡泡脑瓜发布了新的文献求助10
23秒前
358489228完成签到,获得积分10
23秒前
24秒前
xww发布了新的文献求助10
26秒前
27秒前
神勇馒头发布了新的文献求助10
30秒前
30秒前
chen完成签到,获得积分10
32秒前
cindywu发布了新的文献求助10
32秒前
贰叁发布了新的文献求助10
33秒前
34秒前
量子星尘发布了新的文献求助10
35秒前
36秒前
Lu发布了新的文献求助10
38秒前
39秒前
泡泡脑瓜关注了科研通微信公众号
40秒前
丫丫丫完成签到,获得积分20
41秒前
无花果应助GGBOND采纳,获得10
41秒前
跳跃盼波完成签到,获得积分10
43秒前
喜悦松完成签到,获得积分10
44秒前
666完成签到,获得积分10
44秒前
Jessica完成签到,获得积分10
47秒前
47秒前
汉堡包应助666采纳,获得10
48秒前
Hello应助贰叁采纳,获得10
48秒前
上官若男应助hugdoggy采纳,获得10
50秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105