亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic reconstruction of geological reservoir models based on conditioning data constraints and BicycleGAN

条件作用 地质学 计算机科学 石油工程 统计 数学
作者
Wenyao Fan,Gang Liu,Qiyu Chen,Zhesi Cui,Hongfeng Fang,Genshen Chen,Xuechao Wu
标识
DOI:10.1016/j.geoen.2024.212690
摘要

For geological reservoir units with different sizes of pore spaces and relatively stronger anisotropic heterogeneities, Generative-Adversarial-Network-based (GAN) modeling methods can overcome limitation of numerical-simulation-based ones and support finely representation of nonstationary models. However, due to conditioning data weak constraints, GANs might ignore local detail features, with artifacts and noise during simulation. Some pre-processing strategies are strictly limited by the conditioning data distribution patterns, and corresponding processes should be updated frequently when new data are introduced, with relatively complicated operation. Therefore, the BicycleGAN framework was introduced in this paper. Based on bijective consistency between the latent vector and output, an image-to-image translation task with different dimensions is established, and multiple networks were coupled to realize finely representation of spatial attributes. Specifically, the mapping between conditioning data and output is established through the U-Net architecture, which not only local detail information is considered, but also reduce the impact of conditioning data distribution patterns. Meanwhile, the mapping between latent and actual test time distribution is also established by an encoding function to ensure simulation authenticities. In addition, a joint loss function combined with conditioning loss and prior loss is defined to ensure reconstruction accuracy of different facies types. Four kinds of categorical and continuous training images were selected to verify the network simulation performances. Results show that reconstruction accuracy for facies types of conditioning data is almost consistent with those of the references, keeping similarities in terms of spatial variability, connectivity, structural similarity, and facies type reproductions. Meanwhile, for the saved BicycleGAN, inputting different kinds of conditioning data once only, and a variety of simulations can be obtained rapidly, thereby realizing conditioning reconstruction of geological reservoir models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素的山蝶完成签到 ,获得积分10
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
Bugs完成签到,获得积分10
11秒前
16秒前
小八统治世界完成签到 ,获得积分10
17秒前
tang完成签到,获得积分10
36秒前
汉堡包应助舒服的觅夏采纳,获得10
48秒前
suicone完成签到,获得积分10
55秒前
zqq完成签到,获得积分0
1分钟前
1分钟前
归陌完成签到 ,获得积分10
1分钟前
1分钟前
mmyhn发布了新的文献求助10
1分钟前
1分钟前
Dave发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
wbs13521完成签到,获得积分0
2分钟前
3分钟前
儒雅致远发布了新的文献求助10
3分钟前
3分钟前
Hello应助儒雅致远采纳,获得10
3分钟前
正在获取昵称中...完成签到,获得积分10
3分钟前
3分钟前
爆米花应助xiongdi521采纳,获得10
3分钟前
3分钟前
xiongdi521发布了新的文献求助10
3分钟前
xiongdi521完成签到,获得积分10
4分钟前
mmyhn发布了新的文献求助10
4分钟前
4分钟前
4分钟前
Liiiiiiiiii发布了新的文献求助10
4分钟前
三水完成签到 ,获得积分20
5分钟前
小净完成签到 ,获得积分20
5分钟前
cccttt完成签到,获得积分10
5分钟前
mmyhn发布了新的文献求助10
5分钟前
Echo完成签到,获得积分10
5分钟前
无花果应助zzx采纳,获得10
5分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990045
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256354
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805146
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228