Automatic reconstruction of geological reservoir models based on conditioning data constraints and BicycleGAN

条件作用 地质学 计算机科学 石油工程 统计 数学
作者
Wenyao Fan,Gang Liu,Qiyu Chen,Zhesi Cui,Hongfeng Fang,Genshen Chen,Xuechao Wu
标识
DOI:10.1016/j.geoen.2024.212690
摘要

For geological reservoir units with different sizes of pore spaces and relatively stronger anisotropic heterogeneities, Generative-Adversarial-Network-based (GAN) modeling methods can overcome limitation of numerical-simulation-based ones and support finely representation of nonstationary models. However, due to conditioning data weak constraints, GANs might ignore local detail features, with artifacts and noise during simulation. Some pre-processing strategies are strictly limited by the conditioning data distribution patterns, and corresponding processes should be updated frequently when new data are introduced, with relatively complicated operation. Therefore, the BicycleGAN framework was introduced in this paper. Based on bijective consistency between the latent vector and output, an image-to-image translation task with different dimensions is established, and multiple networks were coupled to realize finely representation of spatial attributes. Specifically, the mapping between conditioning data and output is established through the U-Net architecture, which not only local detail information is considered, but also reduce the impact of conditioning data distribution patterns. Meanwhile, the mapping between latent and actual test time distribution is also established by an encoding function to ensure simulation authenticities. In addition, a joint loss function combined with conditioning loss and prior loss is defined to ensure reconstruction accuracy of different facies types. Four kinds of categorical and continuous training images were selected to verify the network simulation performances. Results show that reconstruction accuracy for facies types of conditioning data is almost consistent with those of the references, keeping similarities in terms of spatial variability, connectivity, structural similarity, and facies type reproductions. Meanwhile, for the saved BicycleGAN, inputting different kinds of conditioning data once only, and a variety of simulations can be obtained rapidly, thereby realizing conditioning reconstruction of geological reservoir models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ldjldj_2004完成签到 ,获得积分10
刚刚
小鱼完成签到,获得积分10
1秒前
1秒前
2秒前
传奇3应助换个昵称采纳,获得80
2秒前
2秒前
ju00完成签到,获得积分10
3秒前
孙波发布了新的文献求助10
4秒前
云朵完成签到,获得积分10
4秒前
changhao6787完成签到,获得积分10
5秒前
5秒前
豆果发布了新的文献求助10
6秒前
牛牛完成签到,获得积分10
6秒前
田様应助久念采纳,获得10
6秒前
mai678完成签到,获得积分10
6秒前
包包完成签到 ,获得积分10
6秒前
小鱼儿发布了新的文献求助10
6秒前
Stella应助可可采纳,获得10
7秒前
8秒前
zhao完成签到,获得积分10
8秒前
SUKAILIMAI完成签到,获得积分10
8秒前
水水完成签到 ,获得积分10
8秒前
青青发布了新的文献求助20
9秒前
Derik完成签到,获得积分10
9秒前
9秒前
董小李完成签到,获得积分10
10秒前
10秒前
科研通AI6应助chnningji采纳,获得10
10秒前
釜底游鱼完成签到 ,获得积分10
10秒前
10秒前
秋天吃掉了夏天完成签到,获得积分10
11秒前
11秒前
Orange应助学术大辣鸡采纳,获得10
11秒前
12秒前
香蕉觅云应助乐情采纳,获得10
12秒前
科研通AI6应助shin0324采纳,获得10
12秒前
无敌阿东发布了新的文献求助10
12秒前
13秒前
罗斯ROSE完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568600
求助须知:如何正确求助?哪些是违规求助? 4653216
关于积分的说明 14704706
捐赠科研通 4595016
什么是DOI,文献DOI怎么找? 2521450
邀请新用户注册赠送积分活动 1493035
关于科研通互助平台的介绍 1463793