亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the network shift of large urban agglomerations in China using the deep-learning gravity model: A perspective of population migration

城市群 经济地理学 大都市区 地理 人口 区域科学 城市化 城市规划 计算机科学 经济增长 经济 社会学 人口学 工程类 土木工程 考古
作者
Xinyue Gu,Xingyu Tang,Tong Chen,Xintao Liu
出处
期刊:Cities [Elsevier]
卷期号:145: 104680-104680 被引量:16
标识
DOI:10.1016/j.cities.2023.104680
摘要

The demands of socioeconomic development frequently lead to large-scale population migration among cities. While complex network and population migration algorithms have been employed to evaluate this phenomenon, predicting the future shift of urban networks has remained challenging. In this study, we expend the conventional two-dimensional perception of urban structure, projecting geographic information of cities into a high-dimensional future dimension to forecast changes in the network structure with deep learning algorithms. Using the population migration data from 362 Chinese cities, we employed multivariate and non-linear layers to construct a deep learning model that exhibits good geographic and temporal generalization across major metropolitan regions in China, enabling us to forecast the urban network for the year 2025. The result shows that the urban network becomes more equitable and less concentrated in a few dominant cities. This shift suggests a more balanced distribution of resources, opportunities, and development across the urban agglomerations. Understanding the urban structure from the lens of future mobile networks offers deeper insight and perception of its future dimensional nature. By embracing this paradigm shift, we can retain knowledge about urban dynamics and pave the way for more effective urban management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
刚刚
HaCat应助科研通管家采纳,获得10
刚刚
搜集达人应助可爱丹彤采纳,获得10
3秒前
7秒前
万能图书馆应助可爱丹彤采纳,获得10
20秒前
柚又完成签到 ,获得积分10
37秒前
韩雨桐完成签到 ,获得积分10
43秒前
44秒前
45秒前
Gabriel发布了新的文献求助10
49秒前
852应助可爱丹彤采纳,获得10
51秒前
51秒前
56秒前
深情安青应助可爱丹彤采纳,获得10
1分钟前
1分钟前
领导范儿应助Gabriel采纳,获得10
1分钟前
xiaoxiao发布了新的文献求助10
1分钟前
华仔应助可爱丹彤采纳,获得10
1分钟前
沐沐完成签到,获得积分20
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Tales完成签到 ,获得积分10
2分钟前
沉静的碧琴完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
QQ发布了新的文献求助10
2分钟前
暗号完成签到 ,获得积分0
2分钟前
w123发布了新的文献求助10
2分钟前
天选小牛马完成签到 ,获得积分10
2分钟前
w123完成签到,获得积分10
2分钟前
zwb完成签到 ,获得积分10
2分钟前
SciGPT应助可爱丹彤采纳,获得10
2分钟前
Doctor.TANG完成签到 ,获得积分10
2分钟前
祁言完成签到 ,获得积分10
2分钟前
2分钟前
zqq完成签到,获得积分0
3分钟前
QQ完成签到,获得积分20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302244
求助须知:如何正确求助?哪些是违规求助? 4449478
关于积分的说明 13848401
捐赠科研通 4335641
什么是DOI,文献DOI怎么找? 2380481
邀请新用户注册赠送积分活动 1375461
关于科研通互助平台的介绍 1341639