Synthetic data augmentation by diffusion probabilistic models to enhance weed recognition

杂草 计算机科学 人工智能 机器学习 杂草防治 领域(数学) 深度学习 模式识别(心理学) 数学 农学 生物 纯数学
作者
Dong Chen,Xinda Qi,Yu Zheng,Yuzhen Lu,Yanbo Huang,Zhaojian Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108517-108517 被引量:8
标识
DOI:10.1016/j.compag.2023.108517
摘要

Weed management plays an important role in crop yield and quality protection. Conventional weed control methods largely rely on intensive, blanket herbicide application, which incurs significant management costs and poses hazards to the environment and human health. Machine vision-based automated weeding has gained increasing attention for sustainable weed management through weed recognition and site-specific treatments. However, it remains a challenging task to reliably recognize weeds in variable field conditions, in part due to the difficulty curating large-scale, expert-labeled weed image datasets for supervised training of weed recognition algorithms. Data augmentation methods, including traditional geometric/color transformations and more advanced generative adversarial networks (GANs) can supplement data collection and labeling efforts by algorithmically expanding the scale of datasets. Recently, diffusion models have emerged in the field of image synthesis, providing a new means for augmenting image datasets to power machine vision systems. This study presents a novel investigation of the efficacy of diffusion models for generating weed images to enhance weed identification. Experiments on two public multi-class large weed datasets showed that diffusion models yielded the best trade-off between sample fidelity and diversity and obtained the highest Fréchet Inception Distance, compared to GANs (BigGAN, StyleGAN2, StyleGAN3). For instance, on a ten-class weed dataset (CottonWeedID10), the inclusion of synthetic weed images led to improvements by 1.17% (97.30% to 98.47), 1.21% (97.92% to 99.13%), and 2.30% (96.06% to 98.27%) in accuracy, precision, and recall, respectively, in weed classification by four deep learning models (i.e., VGG16, Inception-v3, Inception-v3, and ResNet50). Models trained using only 10% of real images with the remainder being synthetic data resulted in testing accuracy exceeding 94%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈预立完成签到,获得积分10
刚刚
CSUST科研一哥应助s1kl采纳,获得10
2秒前
huangdq6发布了新的文献求助10
3秒前
4秒前
Zion完成签到,获得积分0
5秒前
5秒前
科研通AI2S应助大力的安青采纳,获得10
6秒前
6秒前
SWIM666发布了新的文献求助10
8秒前
9秒前
大模型应助科研通管家采纳,获得10
10秒前
王兴博应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
zho应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
不配.应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
a7662888发布了新的文献求助200
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
12秒前
Oct完成签到,获得积分10
12秒前
14秒前
16秒前
良辰应助完美的海秋采纳,获得10
16秒前
16秒前
Lee小白完成签到,获得积分10
16秒前
丘比特应助BA1采纳,获得10
16秒前
余悲也白发布了新的文献求助10
16秒前
英姑应助美丽无血采纳,获得10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242959
求助须知:如何正确求助?哪些是违规求助? 2887078
关于积分的说明 8246118
捐赠科研通 2555624
什么是DOI,文献DOI怎么找? 1383762
科研通“疑难数据库(出版商)”最低求助积分说明 649745
邀请新用户注册赠送积分活动 625625