How to enhance the applicability of a risk prediction model for term small‐for‐gestational‐age neonates in clinical settings?

医学 逻辑回归 胎龄 百分位 小于胎龄 人口 生物识别 产科 预测建模 队列 怀孕 独生子女 期限(时间) 统计 内科学 人工智能 计算机科学 数学 物理 环境卫生 生物 量子力学 遗传学
作者
Shao‐Min Kong,Chang Gao,Ang Yu,Shanshan Lin,Dongmei Wei,Cheng‐Rui Wang,Jinhua Lu,Dingyuan Zeng,Jun Zhang,Jianrong He,Xiu Qiu
出处
期刊:International journal of gynaecology and obstetrics [Elsevier BV]
卷期号:165 (3): 1104-1113
标识
DOI:10.1002/ijgo.15268
摘要

Abstract Objective To construct a simple term small‐for‐gestational‐age (SGA) neonate prediction model that is clinically practical. Methods This analysis was based on the Born in Guangzhou Cohort Study (BIGCS). Mothers who had a singleton pregnancy, delivered a term neonate, and had an ultrasonography within 30 + 0 to 32 + 6 weeks of gestation were included. Term SGA was defined with customized population percentiles. Prediction models were constructed with backward selection logistic regression in a four‐step approach, where model 1 contained fetal biometrics only, models 2 and 3 included maternal features and a time factor (weeks between ultrasonography and delivery), respectively; and model 4 contained all features mentioned. The prediction performance of individual models was evaluated based on area under the curve (AUC) and a calibration test was performed. Results The prevalence of SGA in the study population of 21 346 women was 11.5%. With a complete‐case analysis approach, data of 19 954 women were used for model construction and validation. The AUC of the four models were 0.781, 0.793, 0.823, and 0.834, respectively, and all were well‐calibrated. Model 3 consisted of fetal biometrics and corrected for time to delivery was chosen as the final model to build risk prediction graphs for clinical use. Conclusion A prediction model derived from fetal biometrics in early third trimester is satisfactory to predict SGA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真的冬寒完成签到,获得积分20
1秒前
2秒前
怡然的白开水完成签到,获得积分10
2秒前
美满的高丽完成签到 ,获得积分10
3秒前
cara完成签到,获得积分20
3秒前
4秒前
爆米花应助乔垣结衣采纳,获得10
4秒前
欧欧欧导发布了新的文献求助10
4秒前
Hephestus发布了新的文献求助10
4秒前
研友_VZG7GZ应助风匿于山野采纳,获得10
4秒前
4秒前
5秒前
5秒前
why完成签到,获得积分10
6秒前
Leslie应助木头采纳,获得10
6秒前
6秒前
6秒前
布洛芬完成签到,获得积分10
6秒前
若雨凌风应助Explorer采纳,获得100
7秒前
夏睿阳发布了新的文献求助10
7秒前
7秒前
王洋洋发布了新的文献求助10
8秒前
健忘的初翠完成签到,获得积分10
8秒前
流萤发布了新的文献求助10
8秒前
Tao完成签到,获得积分10
8秒前
gu完成签到,获得积分10
8秒前
Lemuel完成签到,获得积分10
9秒前
吕健发布了新的文献求助30
9秒前
汉堡包应助姬松茸夫人采纳,获得10
10秒前
10秒前
加油少年完成签到,获得积分10
10秒前
自由橘子完成签到 ,获得积分10
10秒前
半斤完成签到 ,获得积分10
10秒前
银匠完成签到,获得积分10
11秒前
汉堡包应助jmy1995采纳,获得10
11秒前
Tangviva1988发布了新的文献求助10
11秒前
老流氓发布了新的文献求助20
11秒前
大个应助海夜采纳,获得10
12秒前
simon发布了新的文献求助10
12秒前
bonnie发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953623
求助须知:如何正确求助?哪些是违规求助? 3499390
关于积分的说明 11095224
捐赠科研通 3229945
什么是DOI,文献DOI怎么找? 1785807
邀请新用户注册赠送积分活动 869573
科研通“疑难数据库(出版商)”最低求助积分说明 801479