糠醛
木糖
化学
催化作用
双功能
路易斯酸
选择性
纳米颗粒
碳纤维
单糖
有机化学
化学工程
材料科学
发酵
复合材料
工程类
复合数
作者
Yan Zhong,Yu Liu,Sichen Wang,Shifeng Hou,Yongming Fan
标识
DOI:10.1016/j.indcrop.2023.117913
摘要
Effective production of versatile platform molecules 5-Hydroxymethylfurfural (HMF) and furfural (FF) from biomass-derived carbohydrates is of great importance to synthesis of high-value-added bio-based chemicals and fuels. In order to highly efficient synthesis of HMF and FF, in this work, by integrating tin oxide nanoparticles with sulfonated carbon microspheres, a novel solid acid catalyst (SnOx-NPs@SC) with tunable Lewis/Brønsted acidity was developed for the conversion of glucose and xylose to HMF and FF, respectively. Characterization and experiment revealed that optimization of Sn precursor dosage and pyrolysis temperature was beneficial to the integration of SnOx with sulfonated carbon microspheres and formation of appropriate acid strength and balanced Lewis/Brønsted acid, which could enhance the selective conversion of glucose and xylose to HMF and FF. In the H2O/THF biphasic solvent system with 1.5 mol/L NaCl, the optimized catalyst (0.35-SnOx-NPs@SC-500) exhibited excellent catalytic performance by achieving 90.2% selectivity of HMF at 180 ℃ for 2 h and 85.4% selectivity of FF at 170 ℃ for 2 h, and displayed relatively high stability in five consecutive experimental cycles. The mechanism was discussed based on the physicochemical properties of the catalyst and reaction system. The results of this work provide an effective strategy for designing a bifunctional solid acid catalyst for the one-pot production of highly value-added biomass intermediates.
科研通智能强力驱动
Strongly Powered by AbleSci AI