亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of liquid-based cytology and cell blocks prepared from cell remnants for diagnosis of cervical pathology

Ascus(苔藓虫) 液基细胞学 医学 宫颈癌 活检 细胞学 病理 细胞病理学 宫颈癌筛查 癌症 妇科 放射科 内科学 生物 孢子 子囊孢子 植物
作者
Elif Kuzucular,Ferhat Özden,Bahar Müezzínoğlu
出处
期刊:Annals of Diagnostic Pathology [Elsevier]
卷期号:: 152265-152265
标识
DOI:10.1016/j.anndiagpath.2024.152265
摘要

Cervical cancer is a global public health problem with high mortality. Advances in screening programs for cervical cancer are considered key to eliminate cervical cancer. We aimed to examine the contribution of cell block analysis to the detection of epithelial cell abnormalities in cervical smear samples. A total of 559 patients with suspected cervical pathology were examined, and their samples were analyzed by both liquid-based cytology (LBC) and cell blocks. The biopsy results of 149 out of the 559 patients were obtained. Of the 50 patients who were identified as HSIL by biopsy, only 12 were diagnosed as HSIL by the LBC method, 22 as LSIL, 12 as ASCUS, and 4 as ASC-H (p < 0.001). With the cell block analysis, results for these patients were: 20 HSIL, 17 LSIL, 7 NILM, 4 ‘unsatisfactory’, and 2 ASC cases (p < 0.001). LBC detected only 1 of the 10 patients with biopsy-diagnosed tumors, while 7 of these were defined as HSIL, 1 as ASCUS and 1 as AGC. The results of cell block analysis in patients with biopsy-diagnosed tumors were as follows: 7 HSIL, 1 tumor, 1 ASC and 1 LSIL. Cell block analysis might be superior to LBC in terms of diagnostic accuracy in cervical pathologies, particularly in the detection of HSIL. However, both methods were similarly poor in diagnosing tumors. Cell blocks may improve diagnostic accuracy and can be a complementary method to LBC, while having the advantage of revealing histological architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖胖的江鸟完成签到 ,获得积分10
6秒前
黄淳完成签到 ,获得积分10
20秒前
29秒前
随想完成签到,获得积分10
32秒前
wq发布了新的文献求助10
34秒前
40秒前
Owen应助昭昭采纳,获得10
40秒前
Hello应助Developing_human采纳,获得10
43秒前
香蕉觅云应助wq采纳,获得10
45秒前
45秒前
明月清风完成签到,获得积分10
48秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
SciGPT应助科研通管家采纳,获得10
50秒前
50秒前
Criminology34应助科研通管家采纳,获得10
50秒前
Criminology34应助科研通管家采纳,获得10
50秒前
陈鑫发布了新的文献求助10
55秒前
量子星尘发布了新的文献求助10
56秒前
CC完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
陈鑫完成签到,获得积分20
1分钟前
清爽的大树完成签到,获得积分10
1分钟前
情怀应助pin采纳,获得10
1分钟前
学术混子完成签到,获得积分10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
曲聋五完成签到 ,获得积分0
2分钟前
2分钟前
3分钟前
3分钟前
bc发布了新的文献求助10
3分钟前
3分钟前
爱u发布了新的文献求助10
3分钟前
能干梦安完成签到,获得积分10
3分钟前
3分钟前
华仔应助爱u采纳,获得10
3分钟前
求助人员应助能干梦安采纳,获得10
3分钟前
racchellll完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664241
求助须知:如何正确求助?哪些是违规求助? 4859506
关于积分的说明 15107358
捐赠科研通 4822753
什么是DOI,文献DOI怎么找? 2581699
邀请新用户注册赠送积分活动 1535922
关于科研通互助平台的介绍 1494120