Regulation of the carrier migration path from type II to S-scheme over CdS-loaded CdWO4 polymorphs to boost photocatalytic H2 evolution

化学 光催化 异质结 催化作用 X射线光电子能谱 载流子 电子顺磁共振 光化学 化学工程 光电子学 材料科学 物理 核磁共振 生物化学 工程类
作者
Jingxuan He,Lulu Zhang,Na Li,X.H. Li,Weiguang Ran,Wenjuan Li,Tingjiang Yan
出处
期刊:Journal of Catalysis [Elsevier]
卷期号:430: 115318-115318 被引量:17
标识
DOI:10.1016/j.jcat.2024.115318
摘要

Regulation of the carrier migration path in heterojunction photocatalysts is an effective strategy to improve the performance of photocatalytic hydrogen evolution. Herein, CdS/CdWO4 heterojunction photocatalysts based on two crystal forms of CdWO4 were synthesized via an in-situ anion-exchange reaction. It was discovered that crystal structure and surface defect have a significant impact on the charge carrier migration mechanism during photocatalysis. When CdS was loaded onto monoclinic CdWO4 (M-CdWO4), the resulting CdS/M-CdWO4 heterojunction followed the conventional type- II charge transfer mechanism. In contrast, tetragonal CdWO4 (T-CdWO4) with a substantial number of oxygen vacancies resulted in the CdS/T-CdWO4 composite adopting an S-scheme transport mechanism. Driven by the distinct carrier migration path, the CdS/T-CdWO4 heterojunction demonstrated superior hydrogen evolution performance compared to the CdS/M-CdWO4. Significantly, the hydrogen evolution rate of CdS/T-CdWO4 was 2.56 mmol h−1 g−1, which is about 14 times higher than CdS/M-CdWO4. The excellent photocatalytic activity of CdS/T-CdWO4 could be mainly ascribed to the efficient separation of photogenerated charge carriers and the higher reduction capacity showcasing in S-scheme. Several techniques such as electron paramagnetic resonance (EPR), in-situ X-ray photoelectron spectroscopy (XPS), and selective photodeposition were employed to confirm the regulation of the carrier migration path from type II to S-scheme over CdS-loaded CdWO4 polymorphs. This study provides comprehensive insights into the construction of highly efficient photocatalytic heterojunctions in the viewpoint of polymorph engineering and surface defects from a deeper perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深渊与海发布了新的文献求助10
1秒前
cz完成签到,获得积分10
1秒前
1秒前
1秒前
WANGs发布了新的文献求助10
1秒前
shuo完成签到,获得积分10
1秒前
西西弗斯完成签到,获得积分0
2秒前
kian完成签到,获得积分10
2秒前
2秒前
沙尾完成签到 ,获得积分10
2秒前
发发发完成签到,获得积分10
2秒前
orixero应助关耳采纳,获得10
2秒前
共享精神应助武小伟采纳,获得10
2秒前
2秒前
阿波罗发布了新的文献求助10
2秒前
深情安青应助璐璐核桃露采纳,获得10
2秒前
姿姿发布了新的文献求助10
2秒前
年轻绮南发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
aze发布了新的文献求助30
4秒前
缓慢思枫完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
麦麦关注了科研通微信公众号
5秒前
上官若男应助ABLAT采纳,获得10
5秒前
6秒前
6秒前
Orange应助罗兴鲜采纳,获得10
6秒前
小脚丫完成签到,获得积分10
6秒前
怕黑海冬完成签到,获得积分10
6秒前
Wyan发布了新的文献求助100
6秒前
大个应助shirleeyeahe采纳,获得10
7秒前
yhz123完成签到 ,获得积分10
7秒前
踏雪完成签到 ,获得积分10
7秒前
kolico发布了新的文献求助10
8秒前
小猴子应助王辰北采纳,获得10
8秒前
希望天下0贩的0应助AAA采纳,获得10
8秒前
9秒前
彭于晏应助dh采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853