Regulation of the carrier migration path from type II to S-scheme over CdS-loaded CdWO4 polymorphs to boost photocatalytic H2 evolution

化学 光催化 异质结 催化作用 X射线光电子能谱 载流子 电子顺磁共振 光化学 化学工程 光电子学 材料科学 物理 核磁共振 工程类 生物化学
作者
Jingxuan He,Lulu Zhang,Na Li,X.H. Li,Weiguang Ran,Wenjuan Li,Tingjiang Yan
出处
期刊:Journal of Catalysis [Elsevier]
卷期号:430: 115318-115318 被引量:17
标识
DOI:10.1016/j.jcat.2024.115318
摘要

Regulation of the carrier migration path in heterojunction photocatalysts is an effective strategy to improve the performance of photocatalytic hydrogen evolution. Herein, CdS/CdWO4 heterojunction photocatalysts based on two crystal forms of CdWO4 were synthesized via an in-situ anion-exchange reaction. It was discovered that crystal structure and surface defect have a significant impact on the charge carrier migration mechanism during photocatalysis. When CdS was loaded onto monoclinic CdWO4 (M-CdWO4), the resulting CdS/M-CdWO4 heterojunction followed the conventional type- II charge transfer mechanism. In contrast, tetragonal CdWO4 (T-CdWO4) with a substantial number of oxygen vacancies resulted in the CdS/T-CdWO4 composite adopting an S-scheme transport mechanism. Driven by the distinct carrier migration path, the CdS/T-CdWO4 heterojunction demonstrated superior hydrogen evolution performance compared to the CdS/M-CdWO4. Significantly, the hydrogen evolution rate of CdS/T-CdWO4 was 2.56 mmol h−1 g−1, which is about 14 times higher than CdS/M-CdWO4. The excellent photocatalytic activity of CdS/T-CdWO4 could be mainly ascribed to the efficient separation of photogenerated charge carriers and the higher reduction capacity showcasing in S-scheme. Several techniques such as electron paramagnetic resonance (EPR), in-situ X-ray photoelectron spectroscopy (XPS), and selective photodeposition were employed to confirm the regulation of the carrier migration path from type II to S-scheme over CdS-loaded CdWO4 polymorphs. This study provides comprehensive insights into the construction of highly efficient photocatalytic heterojunctions in the viewpoint of polymorph engineering and surface defects from a deeper perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RJY发布了新的文献求助10
刚刚
7890733发布了新的文献求助10
刚刚
ss_hHe完成签到,获得积分10
1秒前
蛙蛙大王发布了新的文献求助30
1秒前
1秒前
m_seek发布了新的文献求助10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
changping应助科研通管家采纳,获得150
2秒前
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
斯文黎云发布了新的文献求助50
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
xuanqing完成签到,获得积分10
4秒前
4秒前
汉堡包应助lily采纳,获得10
5秒前
Arron发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452