兰克尔
炎症
破骨细胞
癌症研究
体内
关节炎
细胞凋亡
车站3
化学
骨吸收
组织蛋白酶K
肿瘤坏死因子α
药理学
医学
激活剂(遗传学)
免疫学
内科学
生物
受体
生物技术
生物化学
作者
Changhong Li,Fengliang Wang,Yijun Han,Jiayu Zhai,Yinji Jin,Rui Liu,Yan Niu,Zhongqiang Yao,Jinxia Zhao
标识
DOI:10.1016/j.biopha.2024.116195
摘要
Our recent study showed that Nitazoxanide (NTZ), an FDA-approved anti-parasitic drug, prevents ovariectomy-induced bone loss by inhibiting osteoclast activity. However, there have been no investigations to determine whether NTZ has preventive potential in other bone resorbing diseases, especially rheumatoid arthritis (RA). In this study, the primary RA fibroblast-like synoviocytes (RA-FLS) and collagen-induced arthritis (CIA) murine model were used to evaluate the effect of NTZ. The results showed that NTZ potently inhibited proliferation, migration and invasion capacity of RA-FLS in a dose dependent manner by restraining cell entry into S phases, without induction of cell apoptosis. NTZ obviously reduced spontaneous mRNA expression of IL-1β, IL-6 and RANKL, as well as TNF-α-induced transcription of the IL-1β, IL-6, and MMP9 genes. In terms of molecular mechanism, NTZ significantly inhibited the basal or TNF-α-induced activation of JAK2/STAT3 (T705) and NF-κB pathway, but not MAPK and STAT3 (S727) phosphorylation. Moreover, NTZ ameliorated synovial inflammation and bone erosion in CIA mice through reducing the production of inflammatory mediators and osteoclast formation, respectively. Collectively, our findings indicate that NTZ exhibits anti-inflammatory and anti-erosive effects both ex vivo and in vivo, which provides promising evidence for the therapeutic application of NTZ as a novel therapeutic agent for RA.
科研通智能强力驱动
Strongly Powered by AbleSci AI