亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Method Based on Temporal Embedding for the Pairwise Alignment of Dynamic Networks

计算机科学 成对比较 嵌入 动态网络分析 理论计算机科学 稳健性(进化) 最大化 生物网络 代表(政治) 图形 拓扑(电路) 人工智能 数学 数学优化 计算机网络 生物化学 化学 组合数学 政治 政治学 法学 基因
作者
Pietro Cinaglia,Mario Cannataro
出处
期刊:Entropy [MDPI AG]
卷期号:25 (4): 665-665 被引量:16
标识
DOI:10.3390/e25040665
摘要

In network analysis, real-world systems may be represented via graph models, where nodes and edges represent the set of biological objects (e.g., genes, proteins, molecules) and their interactions, respectively. This representative knowledge-graph model may also consider the dynamics involved in the evolution of the network (i.e., dynamic networks), in addition to a classic static representation (i.e., static networks). Bioinformatics solutions for network analysis allow knowledge extraction from the features related to a single network of interest or by comparing networks of different species. For instance, we may align a network related to a well known species to a more complex one in order to find a match able to support new hypotheses or studies. Therefore, the network alignment is crucial for transferring the knowledge between species, usually from simplest (e.g., rat) to more complex (e.g., human). Methods: In this paper, we present Dynamic Network Alignment based on Temporal Embedding (DANTE), a novel method for pairwise alignment of dynamic networks that applies the temporal embedding to investigate the topological similarities between the two input dynamic networks. The main idea of DANTE is to consider the evolution of interactions and the changes in network topology. Briefly, the proposed solution builds a similarity matrix by integrating the tensors computed via the embedding process and, subsequently, it aligns the pairs of nodes by performing its own iterative maximization function. Results: The performed experiments have reported promising results in terms of precision and accuracy, as well as good robustness as the number of nodes and time points increases. The proposed solution showed an optimal trade-off between sensitivity and specificity on the alignments produced on several noisy versions of the dynamic yeast network, by improving by ∼18.8% (with a maximum of 20.6%) the Area Under the Receiver Operating Characteristic (ROC) Curve (i.e., AUC or AUROC), compared to two well known methods: DYNAMAGNA++ and DYNAWAVE. From the point of view of quality, DANTE outperformed these by ∼91% as nodes increase and by ∼75% as the number of time points increases. Furthermore, a ∼23.73% improvement in terms of node correctness was reported with our solution on real dynamic networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
sisyphus发布了新的文献求助10
6秒前
dyh0521完成签到,获得积分20
8秒前
9秒前
11秒前
11秒前
15秒前
18秒前
大方剑愁发布了新的文献求助10
18秒前
Ava应助大zeizei采纳,获得10
27秒前
大方剑愁完成签到 ,获得积分20
27秒前
30秒前
33秒前
37秒前
CodeCraft应助大zeizei采纳,获得10
44秒前
54秒前
大方剑愁发布了新的文献求助10
55秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
平常的羊完成签到 ,获得积分10
1分钟前
大zeizei发布了新的文献求助10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
AM发布了新的文献求助10
1分钟前
翻译度完成签到,获得积分10
2分钟前
迷路的问儿应助AM采纳,获得10
2分钟前
2分钟前
2分钟前
BlankWhite完成签到,获得积分10
2分钟前
2分钟前
2分钟前
溯whale完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059624
关于积分的说明 9067236
捐赠科研通 2750100
什么是DOI,文献DOI怎么找? 1508958
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896