偏最小二乘回归
脂质氧化
卷积神经网络
高光谱成像
模式识别(心理学)
硫代巴比妥酸
计算机科学
平滑的
化学
人工智能
脂质过氧化
机器学习
生物化学
计算机视觉
氧化应激
抗氧化剂
作者
Jiehong Cheng,Jun Sun,Kunshan Yao,Min Xu,Chunxia Dai
出处
期刊:Meat Science
[Elsevier]
日期:2023-07-01
卷期号:201: 109196-109196
被引量:20
标识
DOI:10.1016/j.meatsci.2023.109196
摘要
Lipid and protein oxidation are the main causes of meat deterioration during freezing. Traditional methods using hyperspectral imaging (HSI) need to train multiple independent models to predict multiple attributes, which is complex and time-consuming. In this study, a multi-task convolutional neural network (CNN) model was developed for visible near-infrared HSI data (400-1002 nm) of 240 pork samples treated with different freeze-thaw cycles (0-9 cycles) to evaluate the feasibility of simultaneously monitoring lipid oxidation (thiobarbituric acid reactive substance content) and protein oxidation (carbonyl content) in pork. The performance of the commonly used partial least squares regression (PLSR) model based on the spectra after pre-processing (Standard normal variate, Savitzky-Golay derivative, and Savitzky-Golay smoothing) and feature selection (Regression coefficients) and single-output CNN model was compared. The results showed that the multi-task CNN model achieved the optimal prediction accuracies for lipid oxidation (R2p = 0.9724, RMSEP = 0.0227, and RPD = 5.2579) and protein oxidation (R2p = 0.9602, RMSEP = 0.0702, and RPD = 4.6668). In final, the changes of lipid and protein oxidation of pork in different freeze-thaw cycles were successfully visualized. In conclusion, the combination of HSI and multi-task CNN method shows the potential of end-to-end prediction of pork oxidative damage. This study provides a new, convenient and automated technique for meat quality detection in the food industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI