Multi-task convolutional neural network for simultaneous monitoring of lipid and protein oxidative damage in frozen-thawed pork using hyperspectral imaging

偏最小二乘回归 脂质氧化 卷积神经网络 高光谱成像 模式识别(心理学) 硫代巴比妥酸 计算机科学 平滑的 化学 人工智能 脂质过氧化 机器学习 生物化学 计算机视觉 氧化应激 抗氧化剂
作者
Jiehong Cheng,Jun Sun,Kunshan Yao,Min Xu,Chunxia Dai
出处
期刊:Meat Science [Elsevier BV]
卷期号:201: 109196-109196 被引量:43
标识
DOI:10.1016/j.meatsci.2023.109196
摘要

Lipid and protein oxidation are the main causes of meat deterioration during freezing. Traditional methods using hyperspectral imaging (HSI) need to train multiple independent models to predict multiple attributes, which is complex and time-consuming. In this study, a multi-task convolutional neural network (CNN) model was developed for visible near-infrared HSI data (400-1002 nm) of 240 pork samples treated with different freeze-thaw cycles (0-9 cycles) to evaluate the feasibility of simultaneously monitoring lipid oxidation (thiobarbituric acid reactive substance content) and protein oxidation (carbonyl content) in pork. The performance of the commonly used partial least squares regression (PLSR) model based on the spectra after pre-processing (Standard normal variate, Savitzky-Golay derivative, and Savitzky-Golay smoothing) and feature selection (Regression coefficients) and single-output CNN model was compared. The results showed that the multi-task CNN model achieved the optimal prediction accuracies for lipid oxidation (R2p = 0.9724, RMSEP = 0.0227, and RPD = 5.2579) and protein oxidation (R2p = 0.9602, RMSEP = 0.0702, and RPD = 4.6668). In final, the changes of lipid and protein oxidation of pork in different freeze-thaw cycles were successfully visualized. In conclusion, the combination of HSI and multi-task CNN method shows the potential of end-to-end prediction of pork oxidative damage. This study provides a new, convenient and automated technique for meat quality detection in the food industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助哭泣含莲采纳,获得10
3秒前
4秒前
英吉利25发布了新的文献求助10
5秒前
LaTeXer应助喝杯水再走采纳,获得50
6秒前
6秒前
kong发布了新的文献求助200
8秒前
8秒前
拼搏的败完成签到 ,获得积分10
8秒前
121发布了新的文献求助10
10秒前
11秒前
重要的跳跳糖完成签到,获得积分10
11秒前
11秒前
秋秋完成签到,获得积分20
15秒前
上官若男应助单薄店员采纳,获得10
15秒前
YAMO一完成签到,获得积分10
16秒前
18秒前
19秒前
20秒前
23秒前
英吉利25发布了新的文献求助10
24秒前
25秒前
crack完成签到,获得积分10
25秒前
xcc完成签到,获得积分10
26秒前
26秒前
笑一笑发布了新的文献求助10
26秒前
所所应助葫芦娃采纳,获得10
27秒前
27秒前
纪复天完成签到,获得积分10
28秒前
堃kun发布了新的文献求助10
30秒前
31秒前
31秒前
材料若饥完成签到,获得积分10
32秒前
笑一笑发布了新的文献求助10
32秒前
denghuiying发布了新的文献求助20
33秒前
34秒前
欧阳铭发布了新的文献求助10
34秒前
34秒前
高灿完成签到 ,获得积分10
35秒前
121完成签到,获得积分20
36秒前
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999175
求助须知:如何正确求助?哪些是违规求助? 3538547
关于积分的说明 11274517
捐赠科研通 3277430
什么是DOI,文献DOI怎么找? 1807585
邀请新用户注册赠送积分活动 883948
科研通“疑难数据库(出版商)”最低求助积分说明 810080