Influence of Motion Artifacts on the Performance of Optically Pumped Magnetometers and Accuracy of Magnetoencephalography Source Localization

激光线宽 灵敏度(控制系统) 磁强计 干扰(通信) 噪音(视频) 信噪比(成像) 信号(编程语言) 工件(错误) 脑磁图 生物磁学 计算机科学 电子工程 声学 控制理论(社会学) 计算机视觉 物理 光学 人工智能 磁场 工程类 激光器 电信 脑电图 控制(管理) 精神科 程序设计语言 频道(广播) 图像(数学) 量子力学 心理学
作者
Zhongya Ding,Lin Li,Ziyuan Huang,Bangcheng Han
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-10 被引量:1
标识
DOI:10.1109/tim.2023.3267356
摘要

In this paper, the relationship between motion artifacts and magnetoencephalogram (MEG) source localization errors was established for the MEG system based on array optically pumped magnetometers (OPM). The influences of bias fields on OPM’s performances were first evaluated through theoretical and experimental analysis, whose results proved that the bias magnetic fields along the sensitive axis affect the gain and sensitivity of OPM, while the pumping axis bias magnetic fields affect the direction of the sensitive axis. The OPM with a large linewidth has better anti-interference ability but worse sensitivity. Then, MEG simulations were carried out on the basis of OPM performance testing. The relative error of the forward model proved that the rotated sensitive axis would affect the forward model, while the gain error and sensitivity directly affect the signal-to-noise ratio of the MEG signal. The experiment and simulation also proved that it is recommended to use biaxial mode for OPM-MEG experiments and the motion artifact detected by OPMs should be reduced to less than 1nT at least. Moreover, the linewidth of the OPM’s cell is positively correlated with the anti-interference capability of OPM. Therefore, sensitivity and anti-interference capability must be simultaneously considered in the design of OPM by optimizing the cell’s linewidth to adapt to more scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ziyou发布了新的文献求助10
1秒前
有点甜完成签到,获得积分10
1秒前
1秒前
李健的粉丝团团长应助yycc采纳,获得10
1秒前
365发布了新的文献求助10
1秒前
liruqi完成签到,获得积分10
1秒前
无心的钢铁侠完成签到,获得积分10
2秒前
2秒前
CodeCraft应助PANYIAO采纳,获得10
2秒前
2秒前
科研小白发布了新的文献求助10
2秒前
3秒前
王旭军完成签到,获得积分10
3秒前
科研通AI5应助星辰雪顶采纳,获得10
3秒前
赵李梅发布了新的文献求助10
3秒前
3秒前
3秒前
浮浮世世发布了新的文献求助10
3秒前
木禾火发布了新的文献求助10
3秒前
Akim应助热情的戾采纳,获得10
4秒前
我是老大应助热情的戾采纳,获得10
4秒前
大模型应助热情的戾采纳,获得10
4秒前
共享精神应助热情的戾采纳,获得10
4秒前
Jasper应助热情的戾采纳,获得10
4秒前
所所应助热情的戾采纳,获得10
4秒前
充电宝应助热情的戾采纳,获得10
4秒前
斯文败类应助热情的戾采纳,获得10
4秒前
FashionBoy应助热情的戾采纳,获得10
4秒前
李健应助热情的戾采纳,获得10
4秒前
微笑静柏完成签到 ,获得积分10
4秒前
yuhangcao关注了科研通微信公众号
5秒前
5秒前
一二三亖发布了新的文献求助10
5秒前
研友_VZG7GZ应助zsh采纳,获得10
5秒前
选课发布了新的文献求助10
5秒前
胡小月发布了新的文献求助10
5秒前
6秒前
科研通AI5应助Chenly采纳,获得10
7秒前
7秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481440
求助须知:如何正确求助?哪些是违规求助? 3071576
关于积分的说明 9122712
捐赠科研通 2763320
什么是DOI,文献DOI怎么找? 1516389
邀请新用户注册赠送积分活动 701550
科研通“疑难数据库(出版商)”最低求助积分说明 700413