达尼奥
斑马鱼
褪黑素
黑暗
血清素
转录组
生物
急性毒性
氧化应激
抗氧化剂
毒性
内科学
内分泌学
生物化学
基因表达
医学
基因
植物
受体
作者
Yi Huang,Yuhang Hong,Shu Wu,Xiaozhen Yang,Qiang Huang,Yanzhen Dong,Dayong Xu,Zhiqiu Huang
标识
DOI:10.1016/j.scitotenv.2023.163481
摘要
The present study investigated the toxic effects of IMI on brain and gut of zebrafish (Danio rerio) by a combination of transcriptome and microbiome analysis. In addition, the involvement of light/dark period was also evaluated. An acute toxic test was conducted on adult zebrafish weighing 0.45 ± 0.02 g with 4 experimental groups (n = 15): 1) IMI group (Light: Dark = 12: 12 h), 2) prolonged light group (Light: Dark = 20: 4 h), 3) prolonged darkness group (Light: Dark = 4: 20 h) which received 20 mg/L of IMI, and 4) control group, which was not treated with IMI (Light: Dark = 12: 12 h). The results showed that prolonged darkness improved the survival rate of zebrafish upon IMI exposure for 96 h. In the sub-chronic test, zebrafish were divided into the same 4 groups and exposed to IMI at 1 mg/L for 14 d (n = 30). The results showed that IMI induced oxidative stress in both IMI and prolonged light groups by inhibition of antioxidant activities and accumulation of oxidative products. Transcriptome analysis revealed a compromise of antioxidation and tryptophan metabolism pathways under IMI exposure. Several genes encoding rate-limiting enzymes in serotonin and melatonin synthesis were all inhibited in both IMI and LL groups. Meanwhile, significant decrease (P < 0.5) of serotonin and melatonin levels was observed. However, there's remarkable improvement of biochemical and transcriptional status in prolonged darkness group. In addition, microbiome analysis showed great alteration of gut bacterial community structure and inhibition of tryptophan metabolism pathway. Similarly, the gut microbiota dysbiosis induced by IMI was alleviated in prolonged darkness. In summary, sub-chronic IMI exposure induced neurotoxicity and gut toxicity in zebrafish by oxidative stress and impaired the brain-gut-axis through tryptophan metabolism perturbation. Prolonged darkness could effectively attenuate the IMI toxicity probably through maintaining a normal tryptophan metabolism.
科研通智能强力驱动
Strongly Powered by AbleSci AI