亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Object Navigation Using Potential Target Position Policy Function

计算机科学 对象(语法) 人工智能 任务(项目管理) 强化学习 计算机视觉 功能(生物学) 职位(财务) 关系(数据库) 人机交互 数据挖掘 工程类 系统工程 财务 进化生物学 经济 生物
作者
Haitao Zeng,Xinhang Song,Shuqiang Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2608-2619 被引量:7
标识
DOI:10.1109/tip.2023.3263110
摘要

Visual object navigation is an essential task of embodied AI, which is letting the agent navigate to the goal object under the user's demand. Previous methods often focus on single-object navigation. However, in real life, human demands are generally continuous and multiple, requiring the agent to implement multiple tasks in sequence. These demands can be addressed by repeatedly performing previous single task methods. However, by dividing multiple tasks into several independent tasks to perform, without the global optimization between different tasks, the agents' trajectories may overlap, reducing the efficiency of navigation. In this paper, we propose an efficient reinforcement learning framework with a hybrid policy for multi-object navigation, aiming to maximally eliminate noneffective actions. First, the visual observations are embedded to detect the semantic entities (such as objects). And the detected objects are memorized and projected into semantic maps, which can also be regarded as a long-term memory of the observed environment. Then a hybrid policy consisting of exploration and long-term planning strategies is proposed to predict the potential target position. In particular, when the target is directly oriented, the policy function makes long-term planning for the target based on the semantic map, which is implemented by a sequence of motion actions. In the alternative, when the target is not oriented, the policy function estimates an object's potential position toward exploring the most possible objects (positions) that have close relations to the target. The relation between different objects is obtained with prior knowledge, which is used to predict the potential target position by integrating with the memorized semantic map. And then a path to the potential target is planned by the policy function. We evaluate our proposed method on two large-scale 3D realistic environment datasets, Gibson and Matterport3D, and the experimental results demonstrate the effectiveness and generalization of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是谁还没睡完成签到 ,获得积分10
17秒前
科研通AI5应助猪猪hero采纳,获得30
24秒前
mjf111完成签到,获得积分10
25秒前
小奋青完成签到 ,获得积分10
26秒前
Jadyra给小张不慌的求助进行了留言
28秒前
上官若男应助猪猪hero采纳,获得30
33秒前
38秒前
40秒前
猪猪hero发布了新的文献求助30
43秒前
Jasper应助sunyafei采纳,获得10
45秒前
猪猪hero发布了新的文献求助30
49秒前
年轻的凝云完成签到 ,获得积分10
51秒前
爆米花应助科研通管家采纳,获得30
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
科研通AI5应助科研通管家采纳,获得10
52秒前
53秒前
sunyafei发布了新的文献求助10
58秒前
xiubo128完成签到 ,获得积分10
1分钟前
猪猪hero完成签到,获得积分10
1分钟前
1分钟前
xiubo128完成签到 ,获得积分10
1分钟前
1分钟前
研友_VZG7GZ应助Thor采纳,获得10
1分钟前
科研通AI5应助lihongjie采纳,获得10
1分钟前
欢喜的怜菡完成签到,获得积分10
1分钟前
1分钟前
科目三应助欢喜的怜菡采纳,获得10
1分钟前
Thor发布了新的文献求助10
1分钟前
英俊的铭应助Thor采纳,获得10
1分钟前
1分钟前
碧蓝的盼夏完成签到,获得积分10
2分钟前
2分钟前
Thor发布了新的文献求助10
2分钟前
山楂发布了新的文献求助10
2分钟前
有热心愿意完成签到,获得积分10
2分钟前
尹静涵完成签到 ,获得积分10
2分钟前
山楂完成签到,获得积分10
2分钟前
2分钟前
敏感的缘郡完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767074
求助须知:如何正确求助?哪些是违规求助? 3311529
关于积分的说明 10158838
捐赠科研通 3026733
什么是DOI,文献DOI怎么找? 1661290
邀请新用户注册赠送积分活动 793951
科研通“疑难数据库(出版商)”最低求助积分说明 755878