Multi-Object Navigation Using Potential Target Position Policy Function

计算机科学 对象(语法) 人工智能 任务(项目管理) 强化学习 计算机视觉 功能(生物学) 职位(财务) 关系(数据库) 人机交互 数据挖掘 工程类 系统工程 财务 进化生物学 经济 生物
作者
Haitao Zeng,Xinhang Song,Shuqiang Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2608-2619 被引量:7
标识
DOI:10.1109/tip.2023.3263110
摘要

Visual object navigation is an essential task of embodied AI, which is letting the agent navigate to the goal object under the user's demand. Previous methods often focus on single-object navigation. However, in real life, human demands are generally continuous and multiple, requiring the agent to implement multiple tasks in sequence. These demands can be addressed by repeatedly performing previous single task methods. However, by dividing multiple tasks into several independent tasks to perform, without the global optimization between different tasks, the agents' trajectories may overlap, reducing the efficiency of navigation. In this paper, we propose an efficient reinforcement learning framework with a hybrid policy for multi-object navigation, aiming to maximally eliminate noneffective actions. First, the visual observations are embedded to detect the semantic entities (such as objects). And the detected objects are memorized and projected into semantic maps, which can also be regarded as a long-term memory of the observed environment. Then a hybrid policy consisting of exploration and long-term planning strategies is proposed to predict the potential target position. In particular, when the target is directly oriented, the policy function makes long-term planning for the target based on the semantic map, which is implemented by a sequence of motion actions. In the alternative, when the target is not oriented, the policy function estimates an object's potential position toward exploring the most possible objects (positions) that have close relations to the target. The relation between different objects is obtained with prior knowledge, which is used to predict the potential target position by integrating with the memorized semantic map. And then a path to the potential target is planned by the policy function. We evaluate our proposed method on two large-scale 3D realistic environment datasets, Gibson and Matterport3D, and the experimental results demonstrate the effectiveness and generalization of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李博宇发布了新的文献求助10
2秒前
应应完成签到,获得积分10
2秒前
zhen完成签到,获得积分10
3秒前
4秒前
petraa应助欣喜夜山采纳,获得10
6秒前
愉快谷芹完成签到 ,获得积分10
10秒前
俊逸远望发布了新的文献求助10
10秒前
Lucas应助可爱的电话采纳,获得10
11秒前
believe完成签到,获得积分10
16秒前
jjkku完成签到,获得积分10
17秒前
20秒前
刘不言完成签到,获得积分10
24秒前
苏格拉胯发布了新的文献求助10
24秒前
知性的友易完成签到,获得积分10
24秒前
小鳄鱼一只完成签到,获得积分10
25秒前
小马甲应助lin采纳,获得10
27秒前
29秒前
不想说完成签到,获得积分10
29秒前
31秒前
33秒前
júpiter完成签到,获得积分10
33秒前
土豆你个西红柿完成签到 ,获得积分10
33秒前
Kyone完成签到,获得积分10
34秒前
木穹完成签到,获得积分10
35秒前
善学以致用应助louise采纳,获得10
36秒前
36秒前
花花发布了新的文献求助10
37秒前
bing发布了新的文献求助30
38秒前
ERICLEE82发布了新的文献求助10
38秒前
蜂蜜芥末小熊完成签到,获得积分10
39秒前
40秒前
Tom完成签到 ,获得积分10
41秒前
woyaocifan发布了新的文献求助10
42秒前
43秒前
43秒前
俊逸夜阑发布了新的文献求助10
45秒前
生活的狗完成签到,获得积分10
46秒前
红黄蓝完成签到 ,获得积分10
47秒前
ERICLEE82完成签到,获得积分10
47秒前
47秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540614
求助须知:如何正确求助?哪些是违规求助? 3117897
关于积分的说明 9333158
捐赠科研通 2815765
什么是DOI,文献DOI怎么找? 1547752
邀请新用户注册赠送积分活动 721158
科研通“疑难数据库(出版商)”最低求助积分说明 712515