自噬
安普克
黑色素瘤
PI3K/AKT/mTOR通路
癌症研究
化学
体内
生物
信号转导
蛋白激酶A
激酶
细胞凋亡
生物化学
生物技术
作者
Min Wang,Guang Zeng,Bingrui Xiong,Xiaobin Zhu,Jia Guo,Danyang Chen,Shanshan Zhang,Min Luo,Liang Guo,Lin Cai
标识
DOI:10.1016/j.bcp.2023.115554
摘要
Melanoma has become more common, and its therapeutic management has remained challenging in recent decades. The purpose of our study is to explore new prognostic therapeutic markers of melanoma and to find new therapeutic methods and therapeutic targets of novel drugs, which have great significance. First, the arachidonate 5-lipoxygenase (ALOX5) gene associated with both autophagy and ferroptosis was identified by R version 4.2.0. We used human melanoma and para-cancer tissues, human melanoma cell lines, and melanoma-bearing mouse tissues. We used qRT–PCR, Western blotting, immunohistochemistry, immunofluorescence staining, CCK-8, iron ion assay, GSH assay, and MDA assay. In vivo, the ferroptosis activation and antitumor effects of recombinant human ALOX5 protein were evaluated using a xenograft model. We report that the downregulation of ALOX5 in melanoma is positively correlated with the prognosis of patients and is an independent prognostic factor. Elevated ALOX5 contributes to autophagy and ferroptosis in vitro and in vivo. At the same time, inhibition of autophagy can reduce ferroptosis enhanced by ALOX5, and autophagy and ALOX5 have a synergistic effect. The results of the mechanistic study showed that the increase in ALOX5 could activate the AMPK/mTOR pathway and inhibit GPX4 expression, promoting the occurrence of autophagy-dependent ferroptosis, while the decrease in p-AMPK/AMPK inhibited the occurrence of ferroptosis. ALOX5 deficiency was resistant to autophagy and ferroptosis by inhibiting the AMPK/mTOR pathway. Therefore, it can provide new targets and methods for melanoma drug development.
科研通智能强力驱动
Strongly Powered by AbleSci AI