How well do 13 satellite-derived precipitation products capture the temporal and spatial variations of precipitation over Chinese mainland?

降水 环境科学 空间变异性 空间分布 气候学 卫星 变化(天文学) 中国大陆 时间尺度 空间生态学 大气科学 气象学 遥感 中国 地理 地质学 统计 生态学 数学 物理 考古 航空航天工程 天体物理学 工程类 生物
作者
Zhaohui Chi,Fengrui Chen,Yiguo Wang,Congying Zhang,Guang-Xiong Peng
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (22): 6981-7016 被引量:1
标识
DOI:10.1080/01431161.2023.2277165
摘要

Satellite observations of precipitation have greatly improved our understanding of its temporal and spatial distribution. In view of the high spatiotemporal heterogeneity and severely skewed distribution characteristics of precipitation, it is necessary and of considerable application value to understand the ability of satellite-derived precipitation products (SPPs) to characterize the variations of precipitation in the time and space dimensions separately. However, to date, research concerning this is scarce. In this study, we explore the ability of 13 SPPs to characterize the temporal and spatial variations of precipitation based on observations from more than 2400 meteorological stations in Chinese mainland from 2001 to 2018. The results show that (1) SPPs tend to perform better in identifying the temporal than the spatial variation of precipitation. Most SPPs can reliably monitor the temporal and spatial variation of monthly and seasonal precipitation in Chinese mainland, although the identification of the spatial variation of daily precipitation involves larger uncertainty; (2) CMORPH-B, IMERG-F, 3B42, and MSWEP generally had better performance in identifying the temporal and spatial variations of precipitation, while PERSIANN and GSMaP-N performed poorly. However, no single SPP outperformed others in all scenarios; (3) with respect to monitoring the temporal variation of daily precipitation, SPPs performed better in southern China than in the north, with three-quarters and half of median KGE values above 0.5 In comparison, no significant spatial difference was observed in their ability to monitor the spatial variation of daily precipitation; and (4) SPPs had large uncertainties in capturing the temporal and spatial variations of precipitation in winter, while they performed best in identifying the temporal and spatial variations of daily precipitation in summer. The results of this paper provide an important reference for data users needing to select suitable SPPs and for satellite developers desiring to further improve data quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
64658应助可靠的南露采纳,获得10
1秒前
桃子完成签到,获得积分10
1秒前
浅笑发布了新的文献求助10
2秒前
Chelry发布了新的文献求助10
2秒前
吃饱饱完成签到,获得积分10
3秒前
cllg完成签到 ,获得积分10
3秒前
风从虎关注了科研通微信公众号
5秒前
耶律遗风发布了新的文献求助10
5秒前
6秒前
CodeCraft应助boyue采纳,获得10
6秒前
7秒前
哈哈哈发布了新的文献求助10
9秒前
11秒前
天天快乐应助沉静的靖巧采纳,获得10
11秒前
11秒前
ljw发布了新的文献求助10
11秒前
13秒前
NANA1216完成签到,获得积分10
14秒前
喂_你好完成签到,获得积分10
14秒前
胡桃完成签到 ,获得积分10
14秒前
斯文败类应助跳跃的翼采纳,获得10
14秒前
14秒前
14秒前
111发布了新的文献求助10
14秒前
15秒前
科目三应助彗星入梦采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
不喝奶茶发布了新的文献求助10
16秒前
JAYZHANG完成签到 ,获得积分10
16秒前
16秒前
weiyu发布了新的文献求助10
16秒前
16秒前
ethan2801完成签到,获得积分10
17秒前
18秒前
清脆香萱发布了新的文献求助30
19秒前
含糊的雪冥完成签到,获得积分10
19秒前
19秒前
Biohacking发布了新的文献求助10
20秒前
浅笑完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958245
求助须知:如何正确求助?哪些是违规求助? 3504421
关于积分的说明 11118358
捐赠科研通 3235721
什么是DOI,文献DOI怎么找? 1788421
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582