降水
环境科学
空间变异性
空间分布
气候学
卫星
变化(天文学)
中国大陆
时间尺度
空间生态学
大气科学
气象学
遥感
中国
地理
地质学
统计
生态学
数学
物理
考古
航空航天工程
天体物理学
工程类
生物
作者
Zhaohui Chi,Fengrui Chen,Yiguo Wang,Congying Zhang,Guang-Xiong Peng
标识
DOI:10.1080/01431161.2023.2277165
摘要
Satellite observations of precipitation have greatly improved our understanding of its temporal and spatial distribution. In view of the high spatiotemporal heterogeneity and severely skewed distribution characteristics of precipitation, it is necessary and of considerable application value to understand the ability of satellite-derived precipitation products (SPPs) to characterize the variations of precipitation in the time and space dimensions separately. However, to date, research concerning this is scarce. In this study, we explore the ability of 13 SPPs to characterize the temporal and spatial variations of precipitation based on observations from more than 2400 meteorological stations in Chinese mainland from 2001 to 2018. The results show that (1) SPPs tend to perform better in identifying the temporal than the spatial variation of precipitation. Most SPPs can reliably monitor the temporal and spatial variation of monthly and seasonal precipitation in Chinese mainland, although the identification of the spatial variation of daily precipitation involves larger uncertainty; (2) CMORPH-B, IMERG-F, 3B42, and MSWEP generally had better performance in identifying the temporal and spatial variations of precipitation, while PERSIANN and GSMaP-N performed poorly. However, no single SPP outperformed others in all scenarios; (3) with respect to monitoring the temporal variation of daily precipitation, SPPs performed better in southern China than in the north, with three-quarters and half of median KGE values above 0.5 In comparison, no significant spatial difference was observed in their ability to monitor the spatial variation of daily precipitation; and (4) SPPs had large uncertainties in capturing the temporal and spatial variations of precipitation in winter, while they performed best in identifying the temporal and spatial variations of daily precipitation in summer. The results of this paper provide an important reference for data users needing to select suitable SPPs and for satellite developers desiring to further improve data quality.
科研通智能强力驱动
Strongly Powered by AbleSci AI