已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

How well do 13 satellite-derived precipitation products capture the temporal and spatial variations of precipitation over Chinese mainland?

降水 环境科学 空间变异性 空间分布 气候学 卫星 变化(天文学) 中国大陆 时间尺度 空间生态学 大气科学 气象学 遥感 中国 地理 地质学 统计 生态学 数学 物理 考古 航空航天工程 天体物理学 工程类 生物
作者
Zhaohui Chi,Fengrui Chen,Yiguo Wang,Congying Zhang,Guang-Xiong Peng
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (22): 6981-7016 被引量:1
标识
DOI:10.1080/01431161.2023.2277165
摘要

Satellite observations of precipitation have greatly improved our understanding of its temporal and spatial distribution. In view of the high spatiotemporal heterogeneity and severely skewed distribution characteristics of precipitation, it is necessary and of considerable application value to understand the ability of satellite-derived precipitation products (SPPs) to characterize the variations of precipitation in the time and space dimensions separately. However, to date, research concerning this is scarce. In this study, we explore the ability of 13 SPPs to characterize the temporal and spatial variations of precipitation based on observations from more than 2400 meteorological stations in Chinese mainland from 2001 to 2018. The results show that (1) SPPs tend to perform better in identifying the temporal than the spatial variation of precipitation. Most SPPs can reliably monitor the temporal and spatial variation of monthly and seasonal precipitation in Chinese mainland, although the identification of the spatial variation of daily precipitation involves larger uncertainty; (2) CMORPH-B, IMERG-F, 3B42, and MSWEP generally had better performance in identifying the temporal and spatial variations of precipitation, while PERSIANN and GSMaP-N performed poorly. However, no single SPP outperformed others in all scenarios; (3) with respect to monitoring the temporal variation of daily precipitation, SPPs performed better in southern China than in the north, with three-quarters and half of median KGE values above 0.5 In comparison, no significant spatial difference was observed in their ability to monitor the spatial variation of daily precipitation; and (4) SPPs had large uncertainties in capturing the temporal and spatial variations of precipitation in winter, while they performed best in identifying the temporal and spatial variations of daily precipitation in summer. The results of this paper provide an important reference for data users needing to select suitable SPPs and for satellite developers desiring to further improve data quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥黛丽赫本完成签到,获得积分10
1秒前
lyz发布了新的文献求助10
2秒前
晚风挽清欢完成签到 ,获得积分10
3秒前
小丸子完成签到,获得积分10
3秒前
山水之乐发布了新的文献求助10
4秒前
4秒前
4秒前
vuluv完成签到,获得积分10
5秒前
8秒前
8秒前
地理牛马发布了新的文献求助10
9秒前
12秒前
阔达之卉发布了新的文献求助10
14秒前
与光完成签到 ,获得积分10
15秒前
15秒前
优美紫槐发布了新的文献求助10
16秒前
能干梦安完成签到,获得积分10
17秒前
21秒前
雯wen完成签到,获得积分10
21秒前
地理牛马发布了新的文献求助10
22秒前
22秒前
26秒前
科研通AI2S应助优美紫槐采纳,获得10
26秒前
26秒前
27秒前
27秒前
27秒前
两棵树完成签到,获得积分10
28秒前
bkagyin应助爆爆采纳,获得10
29秒前
温柔冰岚完成签到 ,获得积分10
29秒前
Chen完成签到,获得积分10
30秒前
思源应助jovrtic采纳,获得10
30秒前
洁净冥茗完成签到,获得积分20
31秒前
yang发布了新的文献求助10
31秒前
32秒前
32秒前
地理牛马发布了新的文献求助10
36秒前
37秒前
机灵的幻灵完成签到 ,获得积分10
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657624
求助须知:如何正确求助?哪些是违规求助? 4811149
关于积分的说明 15079938
捐赠科研通 4815859
什么是DOI,文献DOI怎么找? 2576931
邀请新用户注册赠送积分活动 1531935
关于科研通互助平台的介绍 1490452