WaterFormer: A coupled transformer and CNN network for waterbody detection in optical remotely-sensed imagery

计算机科学 像素 变压器 人工智能 卷积神经网络 遥感 图像分辨率 利用 计算机视觉 地理 工程类 计算机安全 电压 电气工程
作者
Jian Kang,Haiyan Guan,Lingfei Ma,Lanying Wang,Zhengsen Xu,Jonathan Li
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:206: 222-241 被引量:14
标识
DOI:10.1016/j.isprsjprs.2023.11.006
摘要

As one of the most significant components of the ecosystem, waterbody needs to be highly monitored at different spatial and temporal scales. Nevertheless, waterbody variations in shape, size, and reflectivity, complicated and varied types of land covers, and environmental scene diversity, present colossal challenges in achieving accurate waterbody detection (WD). In this paper, we propose a novel network coupled with the Transformer and convolutional neural network (CNN), termed WaterFormer, to automatically, efficiently, and accurately delineate waterbodies from optical high-resolution remotely sensed (HR-RS) images. This network mainly includes a dual-stream CNN, a cross-level Vision Transformer, a light-weight attention module, and a sub-pixel up-sampling module. First, the dual-stream network abstracts waterbody features at multi-views and different levels. Then, to exploit the long-range dependencies between low-level spatial information and high-order semantic features, the cross-level Vision Transformer is embedded into the dual-stream, aiming at improving WD accuracy. Afterwards, the light-weight attention module is adopted to provide semantically strong feature abstractions by enhancing discrimination neurons, and the sub-pixel up-sampling module is employed to further generate high-resolution and high-quality class-specific representations. Quantitative and qualitative evaluations demonstrated that the WaterFormer provided a promising means for detecting waterbody areas in satellite images under complex scene conditions. Moreover, comparative analyses with the state-of-the-art (SOTA) alternatives, e.g., MSFENet, MSAFNet, and BiSeNet, also verified the generalization and superiority of the WaterFormer in WD tasks. The assessment results exhibited that the WaterFormer gained an average accuracy of 97.24%, average precision of 94.59%, average recall of 91.95%, average F1-score of 93.24%, and average Kappa index of 0.9133, respectively. Additionally, we presented an open-access HR satellite imagery waterbody dataset, a mesoscale dataset with high-quality and high-precision waterbody annotation to facilitate future research in this field. The dataset has been released at https://github.com/NJdeuK/WD_Dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
郑波涛完成签到,获得积分10
2秒前
737完成签到,获得积分10
2秒前
3秒前
January发布了新的文献求助10
3秒前
爆米花应助Freekor采纳,获得10
3秒前
3秒前
wwwccc发布了新的文献求助10
4秒前
苏栀发布了新的文献求助10
5秒前
薛定谔的电完成签到,获得积分10
5秒前
鹿茸与共发布了新的文献求助10
6秒前
逃避行关注了科研通微信公众号
7秒前
7秒前
鸣笛应助自由的西装采纳,获得30
8秒前
8秒前
要减肥天问完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
苏栀完成签到,获得积分10
10秒前
BK2008完成签到,获得积分10
10秒前
乔乔乔完成签到,获得积分10
12秒前
Hello应助LUNWENREQUEST采纳,获得10
12秒前
秀丽松思完成签到 ,获得积分10
12秒前
充电宝应助wwwccc采纳,获得10
12秒前
Bryan应助王AA采纳,获得10
13秒前
AaBb发布了新的文献求助80
13秒前
wwwww完成签到,获得积分10
14秒前
Kikua发布了新的文献求助10
14秒前
纯真的南琴完成签到,获得积分10
17秒前
情怀应助Vincent1990采纳,获得10
17秒前
绝情继父发布了新的文献求助30
17秒前
xi发布了新的文献求助10
18秒前
我是老大应助偷乐采纳,获得10
18秒前
哈呵嚯嘿呀完成签到,获得积分10
20秒前
20秒前
21秒前
今天读文献了吗完成签到,获得积分10
21秒前
wing6发布了新的文献求助10
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014