WaterFormer: A coupled transformer and CNN network for waterbody detection in optical remotely-sensed imagery

计算机科学 像素 变压器 人工智能 卷积神经网络 遥感 图像分辨率 利用 计算机视觉 地理 工程类 计算机安全 电压 电气工程
作者
Jian Kang,Haiyan Guan,Lingfei Ma,Lanying Wang,Zhengsen Xu,Jonathan Li
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:206: 222-241 被引量:4
标识
DOI:10.1016/j.isprsjprs.2023.11.006
摘要

As one of the most significant components of the ecosystem, waterbody needs to be highly monitored at different spatial and temporal scales. Nevertheless, waterbody variations in shape, size, and reflectivity, complicated and varied types of land covers, and environmental scene diversity, present colossal challenges in achieving accurate waterbody detection (WD). In this paper, we propose a novel network coupled with the Transformer and convolutional neural network (CNN), termed WaterFormer, to automatically, efficiently, and accurately delineate waterbodies from optical high-resolution remotely sensed (HR-RS) images. This network mainly includes a dual-stream CNN, a cross-level Vision Transformer, a light-weight attention module, and a sub-pixel up-sampling module. First, the dual-stream network abstracts waterbody features at multi-views and different levels. Then, to exploit the long-range dependencies between low-level spatial information and high-order semantic features, the cross-level Vision Transformer is embedded into the dual-stream, aiming at improving WD accuracy. Afterwards, the light-weight attention module is adopted to provide semantically strong feature abstractions by enhancing discrimination neurons, and the sub-pixel up-sampling module is employed to further generate high-resolution and high-quality class-specific representations. Quantitative and qualitative evaluations demonstrated that the WaterFormer provided a promising means for detecting waterbody areas in satellite images under complex scene conditions. Moreover, comparative analyses with the state-of-the-art (SOTA) alternatives, e.g., MSFENet, MSAFNet, and BiSeNet, also verified the generalization and superiority of the WaterFormer in WD tasks. The assessment results exhibited that the WaterFormer gained an average accuracy of 97.24%, average precision of 94.59%, average recall of 91.95%, average F1-score of 93.24%, and average Kappa index of 0.9133, respectively. Additionally, we presented an open-access HR satellite imagery waterbody dataset, a mesoscale dataset with high-quality and high-precision waterbody annotation to facilitate future research in this field. The dataset has been released at https://github.com/NJdeuK/WD_Dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助jyoraku采纳,获得10
1秒前
2秒前
PEi完成签到,获得积分10
3秒前
干爆瓶颈完成签到,获得积分10
3秒前
科研通AI2S应助。.。采纳,获得10
3秒前
无花果应助西瓜采纳,获得10
4秒前
pretty完成签到,获得积分10
4秒前
小麦完成签到,获得积分10
4秒前
4秒前
minl完成签到 ,获得积分10
5秒前
甜美早晨完成签到 ,获得积分10
5秒前
fr0zen完成签到,获得积分10
5秒前
Ava应助风白采纳,获得10
6秒前
小滨发布了新的文献求助10
6秒前
jyoraku发布了新的文献求助10
7秒前
orixero应助胡质斌采纳,获得10
8秒前
8秒前
大胆笑翠应助杨可宇采纳,获得10
10秒前
poijegioa完成签到,获得积分10
11秒前
liuliu完成签到 ,获得积分10
11秒前
12秒前
15秒前
yuyu完成签到 ,获得积分10
15秒前
科目三应助艾利克斯采纳,获得10
16秒前
17秒前
路十三发布了新的文献求助10
17秒前
18秒前
18秒前
文艺嫣娆发布了新的文献求助10
19秒前
穆小菜完成签到,获得积分10
21秒前
张东磊发布了新的文献求助10
22秒前
汉堡包应助yesir采纳,获得10
22秒前
酷酷的安柏完成签到 ,获得积分10
22秒前
大脸怪发布了新的文献求助10
24秒前
24秒前
小么小完成签到,获得积分10
27秒前
简单山水发布了新的文献求助10
29秒前
29秒前
Beyond完成签到,获得积分10
31秒前
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243037
求助须知:如何正确求助?哪些是违规求助? 2887097
关于积分的说明 8246502
捐赠科研通 2555694
什么是DOI,文献DOI怎么找? 1383806
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625631