A new LASSO-BiLSTM-based ensemble learning approach for exchange rate forecasting

计算机科学 Lasso(编程语言) 集成学习 人工智能 机器学习 万维网
作者
Siyuan Liu,Qiqian Huang,Mingchen Li,Yunjie Wei
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107305-107305 被引量:17
标识
DOI:10.1016/j.engappai.2023.107305
摘要

Foreign exchange rate affects many countries' economic status and development. Therefore, it is essential to find the factors affecting the exchange rate price and make reasonable predictions. This paper proposes the novel LASSO-BiLSTM-based ensemble learning method by integrating least absolute shrinkage and selection operator (LASSO) and bidirectional long short-term memory (LSTM) to predict the USD/CNY exchange rate. First, 29 variables are selected to reflect economic activities on market and macroeconomic levels. Then, LASSO-BiLSTM-based ensemble learning approach is adopted with two steps: 1) LASSO is used to select six highly correlated variables with the exchange rate to reduce noises. 2) BiLSTM is employed to forecast the exchange rate with the six chosen variables. Last, to test the effectiveness of BiLSTM, comparisons with four deep learning algorithms, which are extreme learning machine (ELM), kernel extreme learning machine (KELM), long short-term memory (LSTM), and support vector regression (SVR), are conducted. The result shows that LASSO-BiLSTM outperforms the other models in 1-step forecast (MAE: 0.051, RMSE: 0.072, MDA: 0.777). The same conclusion applies to 3-steps and 6-steps forecasts. Overall, the proposed LASSO-BiLSTM-based ensemble learning method demonstrates high potential in time series forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拍肩大帝陈灵均完成签到 ,获得积分10
刚刚
Sissimummy完成签到,获得积分10
1秒前
2秒前
2秒前
从容问雁完成签到,获得积分10
2秒前
阿福发布了新的文献求助10
2秒前
开朗道天完成签到 ,获得积分10
2秒前
2秒前
猫绒球发布了新的文献求助10
2秒前
长孙曼香完成签到,获得积分10
3秒前
万能图书馆应助嘟嘟采纳,获得10
3秒前
无脚鸟发布了新的文献求助10
3秒前
哈哈发布了新的文献求助10
4秒前
4秒前
4秒前
吕佳给吕佳的求助进行了留言
4秒前
5秒前
5秒前
6秒前
6秒前
7秒前
如意小虾米完成签到 ,获得积分10
7秒前
刘123完成签到,获得积分10
7秒前
如意小虾米完成签到 ,获得积分10
7秒前
7秒前
张艺凡完成签到,获得积分10
8秒前
无花果应助叶舟采纳,获得10
8秒前
8秒前
9秒前
max完成签到,获得积分10
9秒前
NOIR4LU发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
漂亮的不言完成签到 ,获得积分10
11秒前
WoeL.Aug.11发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879