A new LASSO-BiLSTM-based ensemble learning approach for exchange rate forecasting

计算机科学 Lasso(编程语言) 集成学习 人工智能 机器学习 万维网
作者
Siyuan Liu,Qiqian Huang,Mingchen Li,Yunjie Wei
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107305-107305 被引量:13
标识
DOI:10.1016/j.engappai.2023.107305
摘要

Foreign exchange rate affects many countries' economic status and development. Therefore, it is essential to find the factors affecting the exchange rate price and make reasonable predictions. This paper proposes the novel LASSO-BiLSTM-based ensemble learning method by integrating least absolute shrinkage and selection operator (LASSO) and bidirectional long short-term memory (LSTM) to predict the USD/CNY exchange rate. First, 29 variables are selected to reflect economic activities on market and macroeconomic levels. Then, LASSO-BiLSTM-based ensemble learning approach is adopted with two steps: 1) LASSO is used to select six highly correlated variables with the exchange rate to reduce noises. 2) BiLSTM is employed to forecast the exchange rate with the six chosen variables. Last, to test the effectiveness of BiLSTM, comparisons with four deep learning algorithms, which are extreme learning machine (ELM), kernel extreme learning machine (KELM), long short-term memory (LSTM), and support vector regression (SVR), are conducted. The result shows that LASSO-BiLSTM outperforms the other models in 1-step forecast (MAE: 0.051, RMSE: 0.072, MDA: 0.777). The same conclusion applies to 3-steps and 6-steps forecasts. Overall, the proposed LASSO-BiLSTM-based ensemble learning method demonstrates high potential in time series forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
庾天磊完成签到 ,获得积分10
2秒前
哎哟我去发布了新的文献求助10
3秒前
5秒前
5秒前
6秒前
7秒前
ACCEPT发布了新的文献求助10
7秒前
7秒前
8秒前
TZMY完成签到,获得积分10
10秒前
Hannibal发布了新的文献求助10
10秒前
10秒前
Joshua完成签到,获得积分0
14秒前
14秒前
14秒前
不许放羊完成签到 ,获得积分10
17秒前
bkagyin应助Jiaowen采纳,获得10
17秒前
星期五发布了新的文献求助10
17秒前
呆萌笑晴发布了新的文献求助10
17秒前
mit完成签到 ,获得积分10
18秒前
19秒前
彭于晏应助欣慰的乌冬面采纳,获得10
20秒前
端木永乐完成签到 ,获得积分10
21秒前
小满完成签到,获得积分10
21秒前
小二郎应助诺安成长混合采纳,获得10
22秒前
23秒前
邢文瑞发布了新的文献求助10
23秒前
23秒前
24秒前
25秒前
25秒前
25秒前
26秒前
小猪猪饲养员完成签到,获得积分10
26秒前
zheng-homes发布了新的文献求助10
27秒前
27秒前
NexusExplorer应助老白采纳,获得10
27秒前
酷波er应助Hannibal采纳,获得10
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508797
关于积分的说明 11143246
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873044
科研通“疑难数据库(出版商)”最低求助积分说明 803579