Detection of Adulteration of Alpaca (Vicugna Pacos) Meat Using a Portable Nir Spectrometer and Nir-Hyperspectral Imaging Coupled Chemometrics

化学计量学 高光谱成像 分光计 化学 遥感 色谱法 光学 地理 物理
作者
J.P. Cruz‐Tirado,Matheus Silva dos Santos Vieira,Oscar Oswaldo Vásquez Correa,Daphne Ramos D.,José M. Angulo-Tisoc,Douglas Fernandes Barbin,Raúl Siché
标识
DOI:10.2139/ssrn.4616999
摘要

Alpaca meat has high protein content, good tenderness and low intramuscular fat content, being more expensive than traditional meats (e.g., beef). In this study, a portable NIR spectrometer and NIR-HSI were employed to detect adulteration of alpaca meat with pork, chicken, and beef (0 – 50% w/w). Spectral analysis revealed significant differences in the spectra of pure meat samples using NIR-HSI, primarily associated with fatty acid composition. Principal Component Analysis (PCA) grouped samples into pure and non-pure alpaca meat classes using both devices as sources of spectra. Next, we developed and validated one-class Data Driven Soft Independent Class Analogy (DD-SIMCA) models to authenticate pure alpaca meat. Both NIR-based and NIR-HSI-based DD-SIMCA models achieved 100% sensitivity and 99.7 – 100% specificity in testing. Subsequently, Partial Least Squares Regression (PLSR) models were trained and tested to predict the concentration of pork, chicken, and beef meat in alpaca meat, using the full and selected wavelength range. Here, NIR-HSI outperformed the portable NIR spectrometer in predicting adulterant concentrations, yielding RPD values of 3.39 – 10.19, and RMSEP values of 1.53 – 3.93%, indicating excellent predictive ability to detect adulterants. In conclusion, both devices supported by chemometric can be implemented as screening methods to detect fraud in alpaca meat.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Fang Xianxin完成签到,获得积分10
1秒前
高高晓啸发布了新的文献求助10
1秒前
1秒前
light123完成签到,获得积分10
2秒前
研友_LOqqmZ发布了新的文献求助10
2秒前
充电宝应助碧蓝问玉采纳,获得10
2秒前
思源应助范峰源采纳,获得15
3秒前
FashionBoy应助阳光的天与采纳,获得10
3秒前
3秒前
SU Edward发布了新的文献求助10
3秒前
大模型应助韶邑采纳,获得10
3秒前
起司猫完成签到 ,获得积分10
4秒前
浩然山河完成签到,获得积分10
4秒前
wanci应助悲凉的老虎采纳,获得10
4秒前
破空发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
香蕉觅云应助perdgs采纳,获得10
8秒前
8秒前
无极微光应助jelly采纳,获得20
8秒前
量子星尘发布了新的文献求助10
9秒前
小树发布了新的文献求助10
9秒前
9秒前
清醒完成签到,获得积分10
9秒前
10秒前
10秒前
dd完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
我是老大应助Pengcheng采纳,获得10
12秒前
你说完成签到,获得积分10
12秒前
悲凉的老虎完成签到,获得积分10
13秒前
Edmund发布了新的文献求助10
13秒前
YuenYuen发布了新的文献求助10
14秒前
残剑月发布了新的文献求助10
14秒前
TTYYI发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476