Detection of Adulteration of Alpaca (Vicugna Pacos) Meat Using a Portable Nir Spectrometer and Nir-Hyperspectral Imaging Coupled Chemometrics

化学计量学 高光谱成像 分光计 化学 遥感 色谱法 光学 地理 物理
作者
J.P. Cruz‐Tirado,Matheus Silva dos Santos Vieira,Oscar Oswaldo Vásquez Correa,Daphne Ramos D.,José M. Angulo-Tisoc,Douglas Fernandes Barbin,Raúl Siché
标识
DOI:10.2139/ssrn.4616999
摘要

Alpaca meat has high protein content, good tenderness and low intramuscular fat content, being more expensive than traditional meats (e.g., beef). In this study, a portable NIR spectrometer and NIR-HSI were employed to detect adulteration of alpaca meat with pork, chicken, and beef (0 – 50% w/w). Spectral analysis revealed significant differences in the spectra of pure meat samples using NIR-HSI, primarily associated with fatty acid composition. Principal Component Analysis (PCA) grouped samples into pure and non-pure alpaca meat classes using both devices as sources of spectra. Next, we developed and validated one-class Data Driven Soft Independent Class Analogy (DD-SIMCA) models to authenticate pure alpaca meat. Both NIR-based and NIR-HSI-based DD-SIMCA models achieved 100% sensitivity and 99.7 – 100% specificity in testing. Subsequently, Partial Least Squares Regression (PLSR) models were trained and tested to predict the concentration of pork, chicken, and beef meat in alpaca meat, using the full and selected wavelength range. Here, NIR-HSI outperformed the portable NIR spectrometer in predicting adulterant concentrations, yielding RPD values of 3.39 – 10.19, and RMSEP values of 1.53 – 3.93%, indicating excellent predictive ability to detect adulterants. In conclusion, both devices supported by chemometric can be implemented as screening methods to detect fraud in alpaca meat.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susu完成签到 ,获得积分10
刚刚
heisebeileimao应助111采纳,获得30
2秒前
Owen应助包容代芹采纳,获得10
3秒前
云馨完成签到,获得积分10
3秒前
幽灵发布了新的文献求助10
4秒前
专注的问寒应助黄老牛采纳,获得150
5秒前
bukeshuo发布了新的文献求助10
6秒前
agrlook完成签到,获得积分10
6秒前
小二郎应助chen采纳,获得10
6秒前
8秒前
专注的问寒应助Seona采纳,获得20
8秒前
大个应助xujingyi采纳,获得10
9秒前
biubiubiu发布了新的文献求助10
9秒前
劉劉完成签到 ,获得积分10
10秒前
xz发布了新的文献求助20
12秒前
univ完成签到,获得积分10
13秒前
笑傲江湖完成签到,获得积分10
13秒前
15秒前
kid完成签到,获得积分10
15秒前
Jasper应助123456采纳,获得30
15秒前
lc发布了新的文献求助10
15秒前
15秒前
小白完成签到 ,获得积分10
15秒前
研友_VZG7GZ应助独特的高山采纳,获得10
16秒前
16秒前
17秒前
17秒前
温暖发布了新的文献求助10
19秒前
kid发布了新的文献求助10
19秒前
Dskelf完成签到,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
111给111的求助进行了留言
22秒前
123456完成签到 ,获得积分10
22秒前
香蕉从寒完成签到,获得积分10
25秒前
26秒前
小二郎应助坦率老头采纳,获得10
26秒前
26秒前
利于蓄力完成签到,获得积分10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858