Building a knowledge graph for dietary services targeting specific groups of people

计算机科学 知识图 图形 人口 领域知识 人工智能 数据科学 理论计算机科学 人口学 社会学
作者
Erlin Tian,Weide Liang,Pu Li
出处
期刊:2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC) 卷期号:: 1633-1637
标识
DOI:10.1109/itoec57671.2023.10291739
摘要

Currently, most research focuses on users' behavioral preferences while ignoring the impact of food properties on human health. This article extracts a large amount of knowledge about the relationship between food properties and human health from multiple heterogeneous data sources. Based on this, a knowledge graph in the field of food is constructed for special populations to help them plan their diet more reasonably and reduce the risk of common diseases. Using background data sources such as Baidu Baike and Wikipedia, the BERT-BiLSTM-MHA-CRF method is proposed to extract food-related attributes from more than 14,731 descriptions of food properties. Combined with the differentiated features of special populations, a knowledge graph in the field of food is constructed. The knowledge graph mainly includes six entity types: food nutrition, efficacy and function, food name, population, dish name, and seasoning, with a total of 11,218 entities and 96,186 relationships. The experiment shows that compared with traditional static word vector models, BERT can generate dynamic word vectors based on context in large-scale corpus, making semantic encoding more accurate. The multi-head self-attention mechanism weights various entities in the food domain to reduce the interference of invalid information, making the model more accurate in capturing entity features. The BERT-BiLSTM-MHA-CRF method proposed in this article achieves P, R, and F1 greater than 90%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助jjb采纳,获得10
刚刚
ChenChen完成签到,获得积分20
1秒前
1秒前
2秒前
今后应助虚幻仇血采纳,获得10
2秒前
科研通AI5应助雪白扬采纳,获得10
2秒前
4秒前
欢喜沁完成签到,获得积分10
4秒前
FashionBoy应助闾丘惜萱采纳,获得10
4秒前
酷波er应助流云采纳,获得10
5秒前
张火火发布了新的文献求助10
6秒前
CHEN完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
8秒前
nini完成签到,获得积分10
8秒前
8秒前
awslsdl完成签到,获得积分20
8秒前
9秒前
10秒前
10秒前
10秒前
10秒前
awslsdl发布了新的文献求助10
10秒前
z_king_d_23发布了新的文献求助10
11秒前
TongKY完成签到 ,获得积分10
11秒前
12秒前
熊大哥发布了新的文献求助10
12秒前
13秒前
13秒前
熊啊发布了新的文献求助10
14秒前
14秒前
奥特曼发布了新的文献求助10
14秒前
sxm发布了新的文献求助10
15秒前
在水一方应助z_king_d_23采纳,获得10
15秒前
丘比特应助Pupu采纳,获得10
15秒前
xibei发布了新的文献求助10
16秒前
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769083
求助须知:如何正确求助?哪些是违规求助? 3314085
关于积分的说明 10170792
捐赠科研通 3029180
什么是DOI,文献DOI怎么找? 1662260
邀请新用户注册赠送积分活动 794787
科研通“疑难数据库(出版商)”最低求助积分说明 756421