已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The application of strategy based on LSTM for the short-term prediction of PM2.5 in city

计算机科学 期限(时间) 人工神经网络 特征(语言学) 短时记忆 时间轴 人工智能 深度学习 循环神经网络 统计 数学 语言学 哲学 物理 量子力学
作者
Min‐Der Lin,Ping-Yu Liu,Chi‐Wei Huang,Yu‐Hao Lin
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:906: 167892-167892 被引量:9
标识
DOI:10.1016/j.scitotenv.2023.167892
摘要

Many cities have long suffered from the events of fine particulate matter (PM2.5) pollutions. The Taiwanese Government has long strived to accurately predict the short-term hourly concentration of PM2.5 for the warnings on air pollution. Long Short-Term Memory neural network (LSTM) based on deep learning improves the prediction accuracy of daily PM2.5 concentration but PM2.5 prediction for next hours still needs to be improved. Therefore, this study proposes innovative Application-Strategy-based LSTM (ASLSTM) to accurately predict the short-term hourly PM2.5 concentrations, especially for the high PM2.5 predictions. First, this study identified better spatiotemporal input feature of a LSTM for obtaining this Better LSTM (BLSTM). In doing so, BLSTM trained by appropriate datasets could accurately predict the next hourly pollution concentration. Next, the application strategy was applied on BLSTM to construct ASLSTM. Specifically, from a timeline perspective, ASLSTM concatenates several BLSTMs to predict the concentration of PM2.5 at the following next several hours during which the predicted outputs of BLSTM at this time t was selected and included as the inputs of the next BLSTM at the next time t + 1, and the oldest input used as BLSTM at the time t was removed. The result demonstrated that BLSTM were trained by the dataset collected from 2008 to 2010 at Dali measurement station because there is a relatively large amount of data on high PM2.5 concentration in this dataset. Besides, a comparison of the performance of the ASLSTM with that of the LSTM was made to validate this proposed ASLSTM, especially for the range of higher PM2.5 concentration that people concerned. More importantly, the feasibility of this proposed application strategy and the necessity of optimizing the input parameters of LSTM were validated. In summary, this ASLSTM could accurately predict the short-term PM2.5 in Taichung city.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
balewodi发布了新的文献求助10
2秒前
K神发布了新的文献求助10
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
kbcbwb2002完成签到,获得积分10
5秒前
古风完成签到 ,获得积分10
6秒前
沐夏完成签到,获得积分10
8秒前
you完成签到,获得积分10
11秒前
上官若男应助痞先森采纳,获得10
11秒前
wykion完成签到,获得积分10
15秒前
嘻嘻完成签到 ,获得积分10
16秒前
17秒前
龙虾发票发布了新的文献求助10
17秒前
Jonas完成签到,获得积分10
19秒前
在水一方应助打地鼠工人采纳,获得10
21秒前
22秒前
Thh发布了新的文献求助10
22秒前
小二郎应助动人的书雪采纳,获得10
25秒前
缺牙巴完成签到 ,获得积分10
26秒前
桃桃发布了新的文献求助30
27秒前
于呵呵呵呵完成签到 ,获得积分10
28秒前
传奇3应助鲤鱼坤采纳,获得10
30秒前
30秒前
华仔应助Thh采纳,获得10
33秒前
33秒前
kd1412完成签到 ,获得积分10
37秒前
星辰大海应助慧慧采纳,获得10
37秒前
thanhvader999完成签到,获得积分10
37秒前
39秒前
39秒前
子阅完成签到 ,获得积分10
39秒前
40秒前
研友_VZG7GZ应助zqz采纳,获得30
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136896
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783548
捐赠科研通 2443945
什么是DOI,文献DOI怎么找? 1299509
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954