已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of Raman spectroscopy combined with the gated recurrent unit serum detection method in early screening of gastrointestinal cancer

拉曼光谱 胃肠道癌 癌症 单位(环理论) 光谱学 分析化学(期刊) 化学 内科学 医学 色谱法 结直肠癌 物理 数学 光学 数学教育 量子力学
作者
Kunxiang Liu,Bo Liu,Yu Wang,Qi Zhao,Qi-Nian Wu,Bei Li
出处
期刊:Analyst [Royal Society of Chemistry]
卷期号:148 (23): 6061-6069 被引量:2
标识
DOI:10.1039/d3an01259j
摘要

Gastric and colorectal cancers are significant causes of human mortality. Conventionally, the diagnosis of gastrointestinal tumors has been accomplished through image-based techniques, including endoscopic and biopsy procedures coupled with tissue staining. Most of these methods are invasive. In contrast, Raman spectroscopy has the advantages of being non-invasive and label-free and requiring no additional reagents, making it a potential tool for the detection of serum components. In this study, we collected Raman spectra of serum samples from patients with gastric cancer (n = 93) and colorectal cancer (n = 92) and from healthy individuals (n = 100). Analysis of Raman peak areas revealed that cancer patients had significantly higher peak areas at around 2923 cm-1 compared to normal individuals, which corresponded to the presence of lipids and proteins. We successfully achieved the early screening of gastrointestinal tumors using the improved gated recurrent unit (GRU) algorithm and traditional machine learning methods. The accuracy of identifying digestive tract tumors using different recognition models exceeds 84.72%, with support vector machine (SVM) and GRU achieving 100% accuracy. The use of GRU further demonstrated its ability to differentiate subtypes of gastric and colorectal cancers based on the degree of differentiation and stage, with a recognition accuracy exceeding 95%, which is challenging using traditional machine learning methods. Furthermore, our study revealed that principal component analysis (PCA) dimensionality reduction has a limited impact on the recognition results obtained using different recognition models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Imstemcell发布了新的文献求助10
刚刚
愉快寄真发布了新的文献求助10
1秒前
1秒前
3秒前
孤独蘑菇发布了新的文献求助10
4秒前
ww发布了新的文献求助10
4秒前
7秒前
徽音发布了新的文献求助150
8秒前
8秒前
Imstemcell完成签到,获得积分10
8秒前
Enns完成签到 ,获得积分10
8秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
梁培森完成签到,获得积分10
11秒前
llllll完成签到 ,获得积分10
11秒前
lh发布了新的文献求助10
12秒前
悦耳虔纹完成签到 ,获得积分10
13秒前
13秒前
许诺发布了新的文献求助10
14秒前
14秒前
桐桐应助L14采纳,获得10
15秒前
马到成功发布了新的文献求助10
16秒前
19秒前
打打应助lcj1014采纳,获得10
20秒前
24秒前
YY完成签到,获得积分10
24秒前
上官若男应助寒江雪采纳,获得10
25秒前
科研通AI5应助MMX采纳,获得10
25秒前
Cll完成签到 ,获得积分10
25秒前
26秒前
诚心茈发布了新的文献求助10
28秒前
萱萱发布了新的文献求助10
29秒前
Led发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934687
求助须知:如何正确求助?哪些是违规求助? 4202475
关于积分的说明 13057530
捐赠科研通 3976818
什么是DOI,文献DOI怎么找? 2179239
邀请新用户注册赠送积分活动 1195447
关于科研通互助平台的介绍 1106801