MHRR: MOOCs Recommender Service With Meta Hierarchical Reinforced Ranking

计算机科学 推荐系统 排名(信息检索) 万维网 服务(商务) 情报检索 人工智能 经济 经济
作者
Yuchen Li,Haoyi Xiong,Linghe Kong,Rui Zhang,Fanqin Xu,Guihai Chen,Minglu Li
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:16 (6): 4467-4480 被引量:4
标识
DOI:10.1109/tsc.2023.3325302
摘要

The exponential growth of Massive Open Online Courses (MOOCs) surges the needs of advanced models for personalized Online Education Services (OES). Existing solutions successfully recommend MOOCs courses via deep learning models, they however generate weak "course embeddings" with original profiles, which contain noisy and few enrolled courses. On the other hand, existing algorithms provide recommendation orders according to the score of each course while ignoring personalized demands of users. To tackle the above challenges, we propose a Meta Hierarchical Reinforced Ranking approach MHRR , which consists of a meta hierarchical reinforcement learning pre-trained mechanism and an over-parameterized ranking regressor to enhance the representation learning of courses and learners while refining the ranking result of recommended courses. Specifically, MHRR combines a user profile reviser and a meta embedding generator to provide course embedding representation enhancement for recommender services. Furthermore, MHRR transforms learned representations generated from recommender services with Gaussian kernel approximation to over-parameterize the downstream learning to rank (LTR) models with representations in ultra-high dimensionality. We deploy MHRR on a real-world MOOCs platform and evaluate it with a large number of baseline models. The results show that MHRR outperforms baseline algorithms on two major metrics, including Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG). Also, we conduct a 7-day online evaluation using the realistic traffic of a large-scale real-world MOOCs platform, where we can still observe significant improvement in real-world applications. MHRR performs consistently both in the online and offline evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
青岚发布了新的文献求助50
3秒前
伽ning发布了新的文献求助10
4秒前
坚强的星星完成签到,获得积分10
4秒前
酌风归客发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
7秒前
8秒前
8秒前
8秒前
香菜发布了新的文献求助10
8秒前
奋斗的肉团君完成签到,获得积分10
9秒前
away发布了新的文献求助10
11秒前
11秒前
ASDS发布了新的文献求助10
12秒前
留猪发布了新的文献求助10
12秒前
舒适亦凝发布了新的文献求助10
13秒前
agou发布了新的文献求助10
14秒前
汉堡包应助可爱的摩托采纳,获得10
14秒前
15秒前
16秒前
KKKkkkkk发布了新的文献求助10
16秒前
呼吸之野完成签到,获得积分10
17秒前
伽ning完成签到,获得积分10
17秒前
Luna完成签到 ,获得积分10
18秒前
所所应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
19秒前
Ava应助科研通管家采纳,获得10
19秒前
19秒前
ding应助科研通管家采纳,获得10
19秒前
19秒前
无花果应助ASDS采纳,获得10
19秒前
19秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466417
求助须知:如何正确求助?哪些是违规求助? 3059200
关于积分的说明 9065226
捐赠科研通 2749643
什么是DOI,文献DOI怎么找? 1508690
科研通“疑难数据库(出版商)”最低求助积分说明 696996
邀请新用户注册赠送积分活动 696733