Benchmarking Analysis of Evolutionary Neural Architecture Search

水准点(测量) 计算机科学 进化计算 进化算法 标杆管理 人工神经网络 人工智能 机器学习 适应度函数 趋同(经济学) 遗传算法 大地测量学 经济增长 经济 地理 营销 业务
作者
Zeqiong Lv,Chao Qian,Yanan Sun
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tevc.2023.3324852
摘要

Evolutionary computation-based neural architecture search (ENAS) is a popular technique for automating the architecture design of deep neural networks. For any evolutionary computation-based algorithm, the runtime and convergence are the most important aspects concerned by theoretical analysis. However, because of the lacking of benchmarked fitness functions specialized for ENAS, the corresponding theoretical work is rarely available. To address this issue, we propose three different benchmark functions in this paper based on NAS-Bench-101. Specifically, we first propose a correlation-based feature extraction method, to capture the accuracy relationship between neural architectures and their fitness values. Furthermore, we propose a function toolkit, which allows combining different architecture features to specific benchmark functions. In addition, three benchmark functions are derived upon the toolkit by considering the features of neural net topologies, the features of neural operations, and their combinations. Based on these designs, the search space partition and transition probability calculation could be easily established, which in turn greatly promote the runtime and convergence analysis. We perform the experiments of ranking correlation, and the experimental results demonstrate the correctness of the proposed benchmark functions. To the best of our knowledge, this is the first work focusing on ENAS benchmark functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助LZhao01采纳,获得10
1秒前
顾矜应助Chen采纳,获得10
4秒前
可乐应助粗心的chen采纳,获得10
4秒前
小卓越完成签到 ,获得积分0
4秒前
6秒前
6秒前
安详砖家完成签到 ,获得积分10
9秒前
FashionBoy应助清萍红檀采纳,获得10
9秒前
孤独半青发布了新的文献求助10
11秒前
wangruida完成签到,获得积分10
12秒前
24K纯帅完成签到,获得积分10
12秒前
13秒前
打打应助zz采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
青藤应助科研通管家采纳,获得30
15秒前
Ava应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
青藤应助科研通管家采纳,获得30
15秒前
16秒前
17秒前
Lucas应助ningning采纳,获得10
18秒前
科研通AI5应助清颜采纳,获得10
19秒前
19秒前
科研通AI2S应助yatou5651采纳,获得10
20秒前
20秒前
王婷静发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
腼腆的缘分完成签到,获得积分10
23秒前
23秒前
Q0发布了新的文献求助30
25秒前
25秒前
小六子发布了新的文献求助10
26秒前
轻风发布了新的文献求助10
26秒前
longlonglong完成签到,获得积分10
27秒前
自由绿柳完成签到,获得积分20
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Metal-Ligand Multiple Bonds: The Chemistry of Transition Metal Complexes Containing Oxo, Nitrido, Imido, Alkylidene, or Alkylidyne Ligands 1st Edition 1500
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772768
求助须知:如何正确求助?哪些是违规求助? 3318318
关于积分的说明 10189651
捐赠科研通 3033100
什么是DOI,文献DOI怎么找? 1664093
邀请新用户注册赠送积分活动 796089
科研通“疑难数据库(出版商)”最低求助积分说明 757245