服装
材料科学
复合材料
热舒适性
陶瓷
热的
历史
热力学
物理
气象学
考古
出处
期刊:Coatings
[MDPI AG]
日期:2023-10-16
卷期号:13 (10): 1778-1778
标识
DOI:10.3390/coatings13101778
摘要
Thermal wear comfort for workwear clothing plays a vital role in maintaining comfortable water- and moisture-vapor-permeable properties while wearing clothing. In particular, thermal wear comfort measured using a thermal manikin is required in the protective workwear clothing market because their use provides objective data concerning the actual wearing performance of the clothing. This paper investigated the thermal wear comfort properties of various ceramic-embedded composite fabrics for workwear clothing worn in gas and oil industries produced from new schemes. The thermal insulation rate (Clo value) of Al2O3(Aluminum oxide)/graphite, ZnO(zinc oxide)/ZrC(zirconium carbide) and ZnO/ATO(antimony tin oxide)-embedded clothing was greater (25.5, 24.7 and 16.9%, respectively) than that of regular clothing (control), which was in accordance with the results (15.0, 13.8 and 11.3% higher, respectively) of the heat retention rate (I) of fabric specimens. It revealed that ZnO- and ATO-embedded yarns mixed with ZrC particles enhanced thermal wear comfort and had superior anti-static and UV-protective properties. Considering UV-protective and anti-static protective clothing worn in gas and oil industries and cold weather regions, it can be concluded that ZnO/ZrC-incorporated fabric is suitable because it showed superior thermal wear comfort with excellent UV-protective and acceptable anti-static properties. Meanwhile, assuming high functional performance for protective clothing worn in winter and factories, ZnO/ATO-incorporated fabric is pertinent to fabricating protective clothing for cold weather regions.
科研通智能强力驱动
Strongly Powered by AbleSci AI