亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AMGCN-L: an adaptive multi-time-window graph convolutional network with long-short-term memory for depression detection

计算机科学 人工智能 图形 邻接矩阵 分类 脑电图 模式识别(心理学) 机器学习 心理学 精神科 理论计算机科学
作者
Han-Guang Wang,Qing‐Hao Meng,Li-Cheng Jin,Hui-Rang Hou
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (5): 056038-056038 被引量:7
标识
DOI:10.1088/1741-2552/ad038b
摘要

Abstract Objective. Depression is a common chronic mental disorder characterized by high rates of prevalence, recurrence, suicide, and disability as well as heavy disease burden. An accurate diagnosis of depression is a prerequisite for treatment. However, existing questionnaire-based diagnostic methods are limited by the innate subjectivity of medical practitioners and subjects. In the search for a more objective diagnostic methods for depression, researchers have recently started to use deep learning approaches. Approach. In this work, a deep-learning network, named adaptively multi-time-window graph convolutional network (GCN) with long-short-term memory (LSTM) (i.e. AMGCN-L), is proposed. This network can automatically categorize depressed and non-depressed people by testing for the existence of inherent brain functional connectivity and spatiotemporal features contained in electroencephalogram (EEG) signals. AMGCN-L is mainly composed of two sub-networks: the first sub-network is an adaptive multi-time-window graph generation block with which adjacency matrices that contain brain functional connectivity on different time periods are adaptively designed. The second sub-network consists of GCN and LSTM, which are used to fully extract the innate spatial and temporal features of EEG signals, respectively. Main results. Two public datasets, namely the patient repository for EEG data and computational tools, and the multi-modal open dataset for mental-disorder analysis, were used to test the performance of the proposed network; the depression recognition accuracies achieved in both datasets (using tenfold cross-validation) were 90.38% and 90.57%, respectively. Significance. This work demonstrates that GCN and LSTM have eminent effects on spatial and temporal feature extraction, respectively, suggesting that the exploration of brain connectivity and the exploitation of spatiotemporal features benefit the detection of depression. Moreover, the proposed method provides effective support and supplement for the detection of clinical depression and later treatment procedures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助Chloe采纳,获得10
4秒前
zhangfuchao完成签到,获得积分10
17秒前
18秒前
18秒前
Chloe发布了新的文献求助10
23秒前
嘻嘻哈哈完成签到,获得积分10
29秒前
从容芮完成签到,获得积分0
33秒前
白华苍松发布了新的文献求助10
35秒前
情怀应助Chloe采纳,获得10
40秒前
孤蚀月完成签到,获得积分10
50秒前
54秒前
1分钟前
1分钟前
Chloe发布了新的文献求助10
1分钟前
LILYpig完成签到 ,获得积分10
1分钟前
1分钟前
无花果应助Chloe采纳,获得10
1分钟前
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得100
2分钟前
2分钟前
Chloe发布了新的文献求助10
2分钟前
3分钟前
chen发布了新的文献求助10
3分钟前
orixero应助chen采纳,获得10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
有害学术辣鸡完成签到 ,获得积分10
4分钟前
小马甲应助Chloe采纳,获得10
5分钟前
5分钟前
Chloe发布了新的文献求助10
5分钟前
5分钟前
ly发布了新的文献求助10
5分钟前
5分钟前
所所应助Chloe采纳,获得10
5分钟前
李文岐完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 800
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353489
求助须知:如何正确求助?哪些是违规求助? 2978125
关于积分的说明 8683737
捐赠科研通 2659467
什么是DOI,文献DOI怎么找? 1456257
科研通“疑难数据库(出版商)”最低求助积分说明 674302
邀请新用户注册赠送积分活动 665020