Single domain generalizable and physically interpretable bearing fault diagnosis for unseen working conditions

计算机科学 人工智能 稳健性(进化) 推论 机器学习 领域(数学分析) 预处理器 断层(地质) 一般化 领域知识 代表(政治) 可靠性(半导体) 领域理论 数据挖掘 模式识别(心理学) 数学 生物化学 化学 功率(物理) 物理 量子力学 地震学 政治 政治学 法学 基因 地质学 数学分析 离散数学
作者
Iljeok Kim,Sung Wook Kim,Jeongsan Kim,Hyunsuk Huh,Iljoo Jeong,Taegyu Choi,Jeongchan Kim,Seung‐Chul Lee
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:241: 122455-122455 被引量:28
标识
DOI:10.1016/j.eswa.2023.122455
摘要

State-of-the-art deep learning methods have demonstrated impressive performance in the intelligent fault diagnosis of rolling element bearings. However, in previous studies, critical issues such as domain discrepancy and the inability to interpret a classification decision made it difficult to apply deep learning in real industrial scenarios. Although domain adaptation and domain generalization-based methods have been investigated to solve domain discrepancy, collecting labeled data for various domains (especially continuous and non-stationary working conditions) is extremely difficult in an engineering application. Furthermore, since the classification decision cannot be physically explained, serious reliability problems arise for unseen working conditions (i.e., target domain with domain discrepancy). This study proposes the single domain generalizable and physically interpretable (SDGPI) framework. The proposed model embeds prior knowledge into the neural network combined with signal-preprocessing, which simultaneously enables single source domain generalization and domain interpretation with physical guarantees. Comprehensive case studies demonstrate that domain generalizable representation leads to 1) superior performance and robustness compared with existing methods for various untrained working conditions, as well as 2) efficient data inference even with small data size. Finally, the diagnosis results could be physically understood by displaying the classification decision in terms of the theoretical characteristic fault frequency (i.e., the characteristic fault order), indicating that SDGPI is a versatile and reliable diagnostic tool for unseen working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoxin发布了新的文献求助10
刚刚
1秒前
劉浏琉完成签到,获得积分10
1秒前
完美世界应助大黄采纳,获得10
2秒前
Mic应助小叔叔采纳,获得10
4秒前
viettu7d完成签到,获得积分10
4秒前
5秒前
柯克完成签到,获得积分10
6秒前
李李李发布了新的文献求助10
7秒前
1111一完成签到,获得积分20
7秒前
miaomiao完成签到,获得积分10
8秒前
徐凤年完成签到,获得积分10
9秒前
13秒前
YOLO发布了新的文献求助10
13秒前
13秒前
路宇鹏完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
aca发布了新的文献求助20
16秒前
16秒前
Akim应助鱼鱼子999采纳,获得10
16秒前
17秒前
满意沛槐完成签到 ,获得积分10
18秒前
18秒前
菜菜发布了新的文献求助10
19秒前
20秒前
超级幼旋应助徐小赞采纳,获得10
20秒前
科目三应助Davidjin采纳,获得10
20秒前
20秒前
呆萌听兰发布了新的文献求助10
20秒前
今后应助huoguo采纳,获得10
22秒前
小西呢发布了新的文献求助10
22秒前
多情问儿发布了新的文献求助10
22秒前
22秒前
wybe完成签到,获得积分10
23秒前
领导范儿应助科研通管家采纳,获得10
24秒前
xbxssd应助科研通管家采纳,获得10
24秒前
Tricia应助科研通管家采纳,获得20
24秒前
xinyun应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589694
求助须知:如何正确求助?哪些是违规求助? 4674337
关于积分的说明 14793127
捐赠科研通 4628980
什么是DOI,文献DOI怎么找? 2532400
邀请新用户注册赠送积分活动 1501066
关于科研通互助平台的介绍 1468487