Transformer fault diagnosis based on MPA-RF algorithm and LIF technology

主成分分析 变压器油 变压器 计算机科学 故障检测与隔离 核主成分分析 电子工程 算法 支持向量机 电压 电气工程 人工智能 工程类 核方法 执行机构
作者
Pengcheng Yan,Jingbao Wang,Wenchang Wang,Guodong Li,Y. Zhao,Ziming Wen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025504-025504 被引量:3
标识
DOI:10.1088/1361-6501/ad0ad6
摘要

Abstract Power transformers are essential components in power systems used to regulate voltage, transmit electrical energy, provide isolation, and match loads. They contribute to efficient and reliable electricity transmission and distribution. However, traditional methods for diagnosing transformer faults are time-consuming, not suitable for online monitoring, and greatly affected by environmental conditions. In this experiment, we propose the use of laser-induced fluorescence (LIF) technology for transformer fault detection. LIF technology is a method for analyzing and detecting specific molecules or atoms in samples. It combines laser technology with fluorescence measurements, making it a powerful analytical tool. It achieves high sensitivity and selectivity in analyzing molecules and atoms by exciting and detecting fluorescence in the sample. This makes it an important technology in scientific research and practical applications. Furthermore, LIF technology has not been previously applied to power transformer fault diagnosis. Therefore, this experiment introduces a transformer fault diagnosis model based on the marine predators algorithm (MPA) optimized random forest (RF) algorithm and LIF spectroscopy technology. Four different oil samples were selected for experimentation: crude oil, thermally faulty oil, partially moist oil, and electrically faulty oil. First, LIF technology for collect spectral images and data from the different fault oil samples. The obtained spectral data was preprocessed using two methods, multivariate scatter correction (MSC) and standardization method (SNV). Then, principal component analysis (PCA) and kernel principal component analysis (KPCA) for reducing the dimensionality of the preprocessed spectral data. Finally, the RF model, MPA-RF model, and PSO-RF model were established; and the reduced data was input into the model for training. Through comparisons of the predictions on the test set, evaluation metrics of the algorithm (including fitting coefficient, MSE, RMSE, and RMSE), and iteration convergence curves, the best transformer fault diagnosis model was identified. The results show that the MSC-KPCA-MPA-RF model has the best matching resule, with a fitting coefficient of 0.9963 and a mean square error of 0.0047. The SNV-PCA-MPA-RF model has the worst fitting effect, with a fitting coefficient of 0.9840 and a mean square error of 0.0199. Through comparisons of the convergence of different models, the MSC-KPCA-MPA-RF model has the best convergence and is the most applicable model for transformer fault diagnosis in this experiment. This model has significant implications for ensuring the safety of the power system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助张涛采纳,获得10
刚刚
帅帅完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
阿蒙完成签到,获得积分10
1秒前
领导范儿应助冰巧采纳,获得30
1秒前
2秒前
老阎应助xzy采纳,获得30
3秒前
赵荣珍完成签到,获得积分10
3秒前
3秒前
学术垃圾发布了新的文献求助30
3秒前
winwin发布了新的文献求助10
3秒前
二二发布了新的文献求助10
3秒前
史雅怡发布了新的文献求助10
4秒前
4秒前
Vivi完成签到,获得积分10
4秒前
第一废物发布了新的文献求助30
5秒前
有为完成签到,获得积分10
6秒前
酷波er应助小超人采纳,获得10
6秒前
文艺夏青完成签到,获得积分10
6秒前
Jasper应助张天采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助30
7秒前
KaiZI发布了新的文献求助10
7秒前
蛋糕发布了新的文献求助10
7秒前
1351567822应助开朗丹雪采纳,获得50
8秒前
Lyn完成签到 ,获得积分10
8秒前
zzz发布了新的文献求助10
9秒前
9秒前
JamesPei应助zzz采纳,获得10
10秒前
yyy完成签到,获得积分10
10秒前
10秒前
11秒前
july应助5552222采纳,获得10
11秒前
11秒前
小明surine完成签到 ,获得积分10
11秒前
11秒前
33发布了新的文献求助10
12秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4025388
求助须知:如何正确求助?哪些是违规求助? 3565158
关于积分的说明 11348564
捐赠科研通 3296332
什么是DOI,文献DOI怎么找? 1815609
邀请新用户注册赠送积分活动 890172
科研通“疑难数据库(出版商)”最低求助积分说明 813320