已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transformer fault diagnosis based on MPA-RF algorithm and LIF technology

主成分分析 变压器油 变压器 计算机科学 故障检测与隔离 核主成分分析 电子工程 算法 支持向量机 电压 电气工程 人工智能 工程类 核方法 执行机构
作者
Pengcheng Yan,Jingbao Wang,Wenchang Wang,Guodong Li,Y. Zhao,Ziming Wen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025504-025504 被引量:3
标识
DOI:10.1088/1361-6501/ad0ad6
摘要

Abstract Power transformers are essential components in power systems used to regulate voltage, transmit electrical energy, provide isolation, and match loads. They contribute to efficient and reliable electricity transmission and distribution. However, traditional methods for diagnosing transformer faults are time-consuming, not suitable for online monitoring, and greatly affected by environmental conditions. In this experiment, we propose the use of laser-induced fluorescence (LIF) technology for transformer fault detection. LIF technology is a method for analyzing and detecting specific molecules or atoms in samples. It combines laser technology with fluorescence measurements, making it a powerful analytical tool. It achieves high sensitivity and selectivity in analyzing molecules and atoms by exciting and detecting fluorescence in the sample. This makes it an important technology in scientific research and practical applications. Furthermore, LIF technology has not been previously applied to power transformer fault diagnosis. Therefore, this experiment introduces a transformer fault diagnosis model based on the marine predators algorithm (MPA) optimized random forest (RF) algorithm and LIF spectroscopy technology. Four different oil samples were selected for experimentation: crude oil, thermally faulty oil, partially moist oil, and electrically faulty oil. First, LIF technology for collect spectral images and data from the different fault oil samples. The obtained spectral data was preprocessed using two methods, multivariate scatter correction (MSC) and standardization method (SNV). Then, principal component analysis (PCA) and kernel principal component analysis (KPCA) for reducing the dimensionality of the preprocessed spectral data. Finally, the RF model, MPA-RF model, and PSO-RF model were established; and the reduced data was input into the model for training. Through comparisons of the predictions on the test set, evaluation metrics of the algorithm (including fitting coefficient, MSE, RMSE, and RMSE), and iteration convergence curves, the best transformer fault diagnosis model was identified. The results show that the MSC-KPCA-MPA-RF model has the best matching resule, with a fitting coefficient of 0.9963 and a mean square error of 0.0047. The SNV-PCA-MPA-RF model has the worst fitting effect, with a fitting coefficient of 0.9840 and a mean square error of 0.0199. Through comparisons of the convergence of different models, the MSC-KPCA-MPA-RF model has the best convergence and is the most applicable model for transformer fault diagnosis in this experiment. This model has significant implications for ensuring the safety of the power system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研土人采纳,获得50
2秒前
Lucas应助origin采纳,获得10
4秒前
燕晓啸完成签到 ,获得积分0
6秒前
14秒前
阿尼亚发布了新的文献求助10
14秒前
彩虹天堂关注了科研通微信公众号
16秒前
花花521发布了新的文献求助10
17秒前
明朗完成签到 ,获得积分10
17秒前
18秒前
阿文发布了新的文献求助10
20秒前
20秒前
22秒前
Hung完成签到,获得积分10
23秒前
23秒前
24秒前
agfojd发布了新的文献求助10
25秒前
欣6发布了新的文献求助10
25秒前
25秒前
祭酒发布了新的文献求助10
28秒前
DagrZheng发布了新的文献求助30
29秒前
quanshijie发布了新的文献求助30
32秒前
32秒前
Tian完成签到 ,获得积分10
33秒前
晨雾完成签到 ,获得积分10
33秒前
爱学习的YY完成签到 ,获得积分10
35秒前
origin发布了新的文献求助10
35秒前
西罗应助origin采纳,获得10
40秒前
香蕉觅云应助阿文采纳,获得10
41秒前
CodeCraft应助庄默羽采纳,获得10
42秒前
欣6完成签到,获得积分10
43秒前
顺利山柏完成签到 ,获得积分10
45秒前
伊笙完成签到 ,获得积分10
45秒前
LUJyyyy完成签到,获得积分10
46秒前
Micheal完成签到,获得积分10
49秒前
yayazz发布了新的文献求助10
50秒前
adam完成签到 ,获得积分10
51秒前
52秒前
活泼的匕完成签到 ,获得积分10
52秒前
紫苏关注了科研通微信公众号
54秒前
55秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139400
求助须知:如何正确求助?哪些是违规求助? 2790324
关于积分的说明 7795000
捐赠科研通 2446805
什么是DOI,文献DOI怎么找? 1301366
科研通“疑难数据库(出版商)”最低求助积分说明 626171
版权声明 601141