Transformer fault diagnosis based on MPA-RF algorithm and LIF technology

主成分分析 变压器油 变压器 计算机科学 故障检测与隔离 核主成分分析 电子工程 算法 支持向量机 电压 电气工程 人工智能 工程类 核方法 执行机构
作者
Pengcheng Yan,Jingbao Wang,Wenchang Wang,Guodong Li,Y. Zhao,Ziming Wen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025504-025504 被引量:6
标识
DOI:10.1088/1361-6501/ad0ad6
摘要

Abstract Power transformers are essential components in power systems used to regulate voltage, transmit electrical energy, provide isolation, and match loads. They contribute to efficient and reliable electricity transmission and distribution. However, traditional methods for diagnosing transformer faults are time-consuming, not suitable for online monitoring, and greatly affected by environmental conditions. In this experiment, we propose the use of laser-induced fluorescence (LIF) technology for transformer fault detection. LIF technology is a method for analyzing and detecting specific molecules or atoms in samples. It combines laser technology with fluorescence measurements, making it a powerful analytical tool. It achieves high sensitivity and selectivity in analyzing molecules and atoms by exciting and detecting fluorescence in the sample. This makes it an important technology in scientific research and practical applications. Furthermore, LIF technology has not been previously applied to power transformer fault diagnosis. Therefore, this experiment introduces a transformer fault diagnosis model based on the marine predators algorithm (MPA) optimized random forest (RF) algorithm and LIF spectroscopy technology. Four different oil samples were selected for experimentation: crude oil, thermally faulty oil, partially moist oil, and electrically faulty oil. First, LIF technology for collect spectral images and data from the different fault oil samples. The obtained spectral data was preprocessed using two methods, multivariate scatter correction (MSC) and standardization method (SNV). Then, principal component analysis (PCA) and kernel principal component analysis (KPCA) for reducing the dimensionality of the preprocessed spectral data. Finally, the RF model, MPA-RF model, and PSO-RF model were established; and the reduced data was input into the model for training. Through comparisons of the predictions on the test set, evaluation metrics of the algorithm (including fitting coefficient, MSE, RMSE, and RMSE), and iteration convergence curves, the best transformer fault diagnosis model was identified. The results show that the MSC-KPCA-MPA-RF model has the best matching resule, with a fitting coefficient of 0.9963 and a mean square error of 0.0047. The SNV-PCA-MPA-RF model has the worst fitting effect, with a fitting coefficient of 0.9840 and a mean square error of 0.0199. Through comparisons of the convergence of different models, the MSC-KPCA-MPA-RF model has the best convergence and is the most applicable model for transformer fault diagnosis in this experiment. This model has significant implications for ensuring the safety of the power system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Dr_Zhan完成签到 ,获得积分10
2秒前
文刀刘完成签到 ,获得积分10
3秒前
研友_85rJEL完成签到 ,获得积分10
5秒前
5秒前
小通通完成签到 ,获得积分10
5秒前
领导范儿应助数星星采纳,获得10
6秒前
棒呆了咸蛋超女完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
杨利英完成签到 ,获得积分10
6秒前
7分运气完成签到,获得积分10
6秒前
Yynnn完成签到 ,获得积分10
7秒前
7秒前
9秒前
zwjhbz完成签到,获得积分10
10秒前
科研通AI6.1应助陈龙采纳,获得10
10秒前
赵儒浩发布了新的文献求助10
10秒前
11秒前
12秒前
fyukgfdyifotrf完成签到,获得积分10
12秒前
共享精神应助懒洋洋采纳,获得10
14秒前
拼死拼活完成签到,获得积分10
15秒前
林林完成签到 ,获得积分10
15秒前
hhh发布了新的文献求助10
16秒前
16秒前
17秒前
19秒前
终极007完成签到 ,获得积分10
19秒前
安宁完成签到 ,获得积分10
20秒前
清秀书兰完成签到 ,获得积分10
20秒前
彭于晏应助赵儒浩采纳,获得10
20秒前
曾俊宇完成签到 ,获得积分10
20秒前
20秒前
22秒前
zx发布了新的文献求助10
22秒前
拼死拼活发布了新的文献求助10
22秒前
23秒前
给我好好读书完成签到,获得积分10
24秒前
codwest完成签到,获得积分10
24秒前
诸青梦完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838