Transformer fault diagnosis based on MPA-RF algorithm and LIF technology

主成分分析 变压器油 变压器 计算机科学 故障检测与隔离 核主成分分析 电子工程 算法 支持向量机 电压 电气工程 人工智能 工程类 核方法 执行机构
作者
Pengcheng Yan,Jingbao Wang,Wenchang Wang,Guodong Li,Y. Zhao,Ziming Wen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025504-025504 被引量:3
标识
DOI:10.1088/1361-6501/ad0ad6
摘要

Abstract Power transformers are essential components in power systems used to regulate voltage, transmit electrical energy, provide isolation, and match loads. They contribute to efficient and reliable electricity transmission and distribution. However, traditional methods for diagnosing transformer faults are time-consuming, not suitable for online monitoring, and greatly affected by environmental conditions. In this experiment, we propose the use of laser-induced fluorescence (LIF) technology for transformer fault detection. LIF technology is a method for analyzing and detecting specific molecules or atoms in samples. It combines laser technology with fluorescence measurements, making it a powerful analytical tool. It achieves high sensitivity and selectivity in analyzing molecules and atoms by exciting and detecting fluorescence in the sample. This makes it an important technology in scientific research and practical applications. Furthermore, LIF technology has not been previously applied to power transformer fault diagnosis. Therefore, this experiment introduces a transformer fault diagnosis model based on the marine predators algorithm (MPA) optimized random forest (RF) algorithm and LIF spectroscopy technology. Four different oil samples were selected for experimentation: crude oil, thermally faulty oil, partially moist oil, and electrically faulty oil. First, LIF technology for collect spectral images and data from the different fault oil samples. The obtained spectral data was preprocessed using two methods, multivariate scatter correction (MSC) and standardization method (SNV). Then, principal component analysis (PCA) and kernel principal component analysis (KPCA) for reducing the dimensionality of the preprocessed spectral data. Finally, the RF model, MPA-RF model, and PSO-RF model were established; and the reduced data was input into the model for training. Through comparisons of the predictions on the test set, evaluation metrics of the algorithm (including fitting coefficient, MSE, RMSE, and RMSE), and iteration convergence curves, the best transformer fault diagnosis model was identified. The results show that the MSC-KPCA-MPA-RF model has the best matching resule, with a fitting coefficient of 0.9963 and a mean square error of 0.0047. The SNV-PCA-MPA-RF model has the worst fitting effect, with a fitting coefficient of 0.9840 and a mean square error of 0.0199. Through comparisons of the convergence of different models, the MSC-KPCA-MPA-RF model has the best convergence and is the most applicable model for transformer fault diagnosis in this experiment. This model has significant implications for ensuring the safety of the power system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳冰烟完成签到,获得积分10
1秒前
雨雾完成签到,获得积分10
1秒前
斯文败类应助凶狠的乐巧采纳,获得10
1秒前
1秒前
生言生语完成签到,获得积分10
1秒前
alick发布了新的文献求助10
2秒前
钰c发布了新的文献求助10
2秒前
Maggie完成签到 ,获得积分10
2秒前
四月是一只爱猫的羊完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
打打应助嘟嘟请让一让采纳,获得10
4秒前
专一完成签到,获得积分10
4秒前
Lucas应助九川采纳,获得10
4秒前
yl关闭了yl文献求助
4秒前
5秒前
研友_VZG7GZ应助韩莎莎采纳,获得10
5秒前
5秒前
丘比特应助卡卡采纳,获得10
6秒前
6秒前
毛毛发布了新的文献求助10
6秒前
ljx完成签到 ,获得积分10
6秒前
活力山蝶应助小白采纳,获得10
9秒前
xg完成签到,获得积分10
9秒前
Zezezee发布了新的文献求助10
9秒前
笑点低可乐完成签到,获得积分10
10秒前
10秒前
坚强的樱发布了新的文献求助10
10秒前
10秒前
求解限发布了新的文献求助160
10秒前
11秒前
白宝宝北北白应助XIN采纳,获得10
11秒前
wenjian发布了新的文献求助10
11秒前
12秒前
华仔应助jy采纳,获得10
12秒前
hoongyan完成签到 ,获得积分10
12秒前
Ava应助aoxiangcaizi12采纳,获得10
14秒前
Amai完成签到,获得积分10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794