HAMFace: Hardness adaptive margin loss for face recognition with various intra-class variations

Softmax函数 边距(机器学习) 计算机科学 卷积神经网络 面部识别系统 面子(社会学概念) 班级(哲学) 人工智能 功能(生物学) 模式识别(心理学) 机器学习 社会科学 社会学 进化生物学 生物
作者
Jiazhi Li,Degui Xiao,Tao Lu,Yap Chun Wei,Jia Li,Lei Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122384-122384 被引量:1
标识
DOI:10.1016/j.eswa.2023.122384
摘要

The boost of convolutional neural networks (CNNs) has promoted the development of face recognition. Recently, the emergence of margin-based loss functions has further significantly improved the performance of face recognition. However, these methods sharply degrade in performance when dealing with large intra-class variations, including age, pose, illumination, resolution, and occlusion. Unlike most methods that target specific variations, our proposed approach, HAMFace, addresses the problems uniformly from the perspective of hard positive examples. To mitigate the intra-class variance, we argue that hard positive examples prefer larger margins, which can push them closer to their corresponding class centers. First, we design a hardness adaptive margin function to adjust the margin according to the hardness of the hard positive examples. Then, to enhance performance for unconstrained face recognition with various intra-class variations, we introduce a novel loss function named Hardness Adaptive Margin (HAM) Softmax Loss. This loss function allocates larger margins to hard positive examples during training based on their level of hardness. The proposed HAMFace is evaluated on nine challenging face recognition benchmarks and exhibits its superiority compared with other state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pjson15376449841完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
深情安青应助章半仙采纳,获得10
1秒前
1秒前
doctor小陈发布了新的文献求助10
1秒前
科目三应助高兴的万宝路采纳,获得10
2秒前
乐乐应助顾文采纳,获得10
2秒前
3秒前
4秒前
4秒前
哦豁完成签到 ,获得积分10
4秒前
5秒前
júpiter发布了新的文献求助10
5秒前
louise应助刻苦秋尽采纳,获得10
6秒前
6秒前
hhl完成签到,获得积分10
6秒前
沉静的清涟完成签到,获得积分10
6秒前
zwjhbz完成签到,获得积分10
6秒前
7秒前
科研通AI6应助pjson15376449841采纳,获得10
7秒前
星辰大海应助wuxunxun2015采纳,获得10
8秒前
8秒前
无限荆完成签到 ,获得积分10
9秒前
英姑应助George采纳,获得10
9秒前
LZJ发布了新的文献求助10
9秒前
10秒前
搜文献的北北完成签到,获得积分10
10秒前
10秒前
Ava应助kantanna采纳,获得10
10秒前
tinale_huang发布了新的文献求助30
11秒前
tinale_huang发布了新的文献求助30
11秒前
tinale_huang发布了新的文献求助30
11秒前
tinale_huang发布了新的文献求助30
11秒前
星辰大海应助冷静火龙果采纳,获得30
11秒前
11秒前
Nico完成签到 ,获得积分10
11秒前
12秒前
亦木发布了新的文献求助10
13秒前
Lucas应助nuonuo采纳,获得10
13秒前
温婉的篮球完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812