Cu nanocrystals coupled with poly (heptazine imide) for synergistically enhanced photocatalytic CH3SH elimination: Facet engineering strengthened electron pump effect

光催化 吸附 密度泛函理论 化学 材料科学 光化学 化学工程 催化作用 物理化学 计算化学 有机化学 工程类
作者
Zhong Tao,Su Tang,Wenbin Huang,Wei Liu,Huinan Zhao,Lingling Hu,Shuanghong Tian,Chun He
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:343: 123476-123476 被引量:19
标识
DOI:10.1016/j.apcatb.2023.123476
摘要

The efficient separation and utilization of intrinsic carriers in photocatalyst, as well as the adsorption and elimination of target pollutants, are two critical challenges in the development of photocatalytic oxidation technology. Herein, the different crystal facet of Cu (111), Cu (100), Cu (111 +100) were engineered and coupled with Poly (heptazine imide) (PHI) as an emerging photocatalyst for CH3SH elimination under simulated solar light (SSL). Cu (111)/PHI exhibited 87.8% elimination efficiency after 30 min of illumination, significantly higher than that of pure PHI (60.4%), Cu (100)/PHI (71.5%), and Cu (111 +100)/PHI (70.4%). Besides, the photocatalytic performance was maintained at 83.3% after a prolonged reaction time of up to 450 min, indicating that Cu (111)/PHI has good stability and reusability. A comprehensive characterizations study confirmed that Cu (111) exhibited the enhanced surface electron pump effect compared to Cu (100) and Cu (111 +100), facilitating the accelerated extraction and transfer of photogenerated charge carriers. Density functional theory (DFT) calculations revealed that Cu (111) surface active sites can effectively adsorb H2O, O2, and CH3SH due to unsaturated pairing of d-orbital electrons, thus prompting the activation of H2O, O2 into reactive oxygen species (•OH/•O2−/1O2) for the eliminating of adjacent CH3SH. This study presents a new facet engineering approach for the rational design of highly efficient photocatalysts for the elimination of S-VOCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一应助小蓝采纳,获得10
1秒前
2秒前
开心秋天完成签到 ,获得积分10
2秒前
jjgod发布了新的文献求助10
2秒前
CherylZhao完成签到,获得积分10
3秒前
Eilleen发布了新的文献求助10
3秒前
何静发布了新的文献求助10
3秒前
4秒前
超级的鞅发布了新的文献求助10
4秒前
斑其发布了新的文献求助10
4秒前
6秒前
6秒前
智慧发布了新的文献求助30
6秒前
DTS发布了新的文献求助10
7秒前
YI_JIA_YI完成签到,获得积分10
7秒前
小痞子完成签到 ,获得积分10
7秒前
苗灵雁完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
善学以致用应助超级的鞅采纳,获得10
8秒前
猪猪hero应助elang采纳,获得10
9秒前
weiyi发布了新的文献求助10
10秒前
佩琪完成签到,获得积分10
10秒前
包容秋珊发布了新的文献求助10
10秒前
缥缈的涵菡完成签到 ,获得积分10
11秒前
冷酷的溜溜梅完成签到 ,获得积分10
11秒前
12秒前
kaikai完成签到,获得积分10
12秒前
鱼鱼鱼发布了新的文献求助10
12秒前
带善人完成签到,获得积分10
12秒前
13秒前
13秒前
科研通AI6应助zhangyulong采纳,获得10
13秒前
爆爆发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
14秒前
小雨堂完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802