Development of a Novel Artificial Intelligence System for Laparoscopic Hepatectomy

医学 解剖(医学) 肝切除术 人工智能 深度学习 外科 计算机科学 切除术
作者
Kodai Tomioka,Takeshi Aoki,NAO KOBAYASHI,Yoshihiko Tashiro,Yuta Kumazu,Hideki Shibata,Takahito Hirai,Tatsuya Yamazaki,Kazuhiko Saito,Kimiyasu Yamazaki,Makoto Watanabe,Kazuhiro Matsuda,Tomokazu Kusano,Akira Fujimori,Yuta Enami
出处
期刊:Anticancer Research [International Institute of Anticancer Research (IIAR) Conferences 1997. Athens, Greece. Abstracts]
卷期号:43 (11): 5235-5243 被引量:2
标识
DOI:10.21873/anticanres.16725
摘要

Background/Aim: Laparoscopic hepatectomy (LH) requires accurate visualization and appropriate handling of hepatic veins and the Glissonean pedicle that suddenly appear during liver dissection. Failure to recognize these structures can cause injury, resulting in severe bleeding and bile leakage. This study aimed to develop a novel artificial intelligence (AI) system that assists in the visual recognition and color presentation of tubular structures to correct the recognition gap among surgeons. Patients and Methods: Annotations were performed on over 350 video frames capturing LH, after which a deep learning model was developed. The performance of the AI was evaluated quantitatively using intersection over union (IoU) and Dice coefficients, as well as qualitatively using a two-item questionnaire on sensitivity and misrecognition completed by 10 hepatobiliary surgeons. The usefulness of AI in medical education was qualitatively evaluated by 10 medical students and residents. Results: The AI model was able to individually recognize and colorize hepatic veins and the Glissonean pedicle in real time. The IoU and Dice coefficients were 0.42 and 0.53, respectively. Surgeons provided a mean sensitivity score of 4.24±0.89 (from 1 to 5; Excellent) and a mean misrecognition score of 0.12±0.33 (from 0 to 4; Fail). Medical students and residents assessed the AI to be very useful (mean usefulness score, 1.86±0.35; from 0 to 2; Excellent). Conclusion: The novel AI presented was able to assist surgeons in the intraoperative recognition of microstructures and address the recognition gap among surgeons to ensure a safer and more accurate LH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻盼晴发布了新的文献求助10
1秒前
科研通AI5应助xx采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
chaos关注了科研通微信公众号
3秒前
hiha完成签到 ,获得积分10
3秒前
4秒前
加油鸭鸭鸭完成签到,获得积分10
5秒前
5秒前
eds完成签到,获得积分10
6秒前
范麒如完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
shaoming完成签到,获得积分10
8秒前
ff发布了新的文献求助10
8秒前
9秒前
浮生完成签到 ,获得积分10
9秒前
fsm关闭了fsm文献求助
10秒前
初夏发布了新的文献求助10
10秒前
drliaowu完成签到 ,获得积分10
10秒前
maox1aoxin应助animages采纳,获得50
11秒前
杋困了完成签到 ,获得积分10
11秒前
11秒前
11秒前
Hus11221完成签到,获得积分10
11秒前
贝果小脑袋完成签到,获得积分10
12秒前
易川发布了新的文献求助10
12秒前
102755完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
鸭嗦饼干发布了新的文献求助10
14秒前
搜集达人应助巫马白亦采纳,获得10
14秒前
桐桐应助等待的雪碧采纳,获得10
14秒前
隐形曼青应助现代的涵雁采纳,获得10
14秒前
15秒前
无敌暴龙战神完成签到 ,获得积分10
16秒前
哈尼完成签到,获得积分10
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662735
求助须知:如何正确求助?哪些是违规求助? 3223515
关于积分的说明 9752041
捐赠科研通 2933470
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771