Development of a Novel Artificial Intelligence System for Laparoscopic Hepatectomy

医学 解剖(医学) 肝切除术 人工智能 深度学习 外科 计算机科学 切除术
作者
Kodai Tomioka,Takeshi Aoki,NAO KOBAYASHI,Yoshihiko Tashiro,Yuta Kumazu,Hideki Shibata,Takahito Hirai,Tatsuya Yamazaki,Kazuhiko Saito,Kimiyasu Yamazaki,Makoto Watanabe,Kazuhiro Matsuda,Tomokazu Kusano,Akira Fujimori,Yuta Enami
出处
期刊:Anticancer Research [International Institute of Anticancer Research (IIAR) Conferences 1997. Athens, Greece. Abstracts]
卷期号:43 (11): 5235-5243 被引量:2
标识
DOI:10.21873/anticanres.16725
摘要

Background/Aim: Laparoscopic hepatectomy (LH) requires accurate visualization and appropriate handling of hepatic veins and the Glissonean pedicle that suddenly appear during liver dissection. Failure to recognize these structures can cause injury, resulting in severe bleeding and bile leakage. This study aimed to develop a novel artificial intelligence (AI) system that assists in the visual recognition and color presentation of tubular structures to correct the recognition gap among surgeons. Patients and Methods: Annotations were performed on over 350 video frames capturing LH, after which a deep learning model was developed. The performance of the AI was evaluated quantitatively using intersection over union (IoU) and Dice coefficients, as well as qualitatively using a two-item questionnaire on sensitivity and misrecognition completed by 10 hepatobiliary surgeons. The usefulness of AI in medical education was qualitatively evaluated by 10 medical students and residents. Results: The AI model was able to individually recognize and colorize hepatic veins and the Glissonean pedicle in real time. The IoU and Dice coefficients were 0.42 and 0.53, respectively. Surgeons provided a mean sensitivity score of 4.24±0.89 (from 1 to 5; Excellent) and a mean misrecognition score of 0.12±0.33 (from 0 to 4; Fail). Medical students and residents assessed the AI to be very useful (mean usefulness score, 1.86±0.35; from 0 to 2; Excellent). Conclusion: The novel AI presented was able to assist surgeons in the intraoperative recognition of microstructures and address the recognition gap among surgeons to ensure a safer and more accurate LH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助过氧化氢采纳,获得10
1秒前
青山发布了新的文献求助50
2秒前
2秒前
大白发布了新的文献求助10
2秒前
2秒前
热情的达完成签到,获得积分10
2秒前
酷波er应助十九岁的时差采纳,获得10
2秒前
gj发布了新的文献求助10
3秒前
Hairee发布了新的文献求助10
3秒前
momo发布了新的文献求助10
7秒前
称心尔曼完成签到,获得积分10
8秒前
10秒前
12秒前
谷蓝完成签到,获得积分10
12秒前
14秒前
希望天下0贩的0应助Hairee采纳,获得10
15秒前
Rondab应助ali采纳,获得30
16秒前
懒羊羊完成签到,获得积分10
16秒前
好吃完成签到,获得积分20
16秒前
好吃发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
张雯思发布了新的文献求助10
21秒前
fjm完成签到,获得积分10
21秒前
老实雁蓉完成签到,获得积分10
22秒前
fjm发布了新的文献求助10
23秒前
25秒前
微醺小王发布了新的文献求助10
25秒前
27秒前
zhang发布了新的文献求助10
27秒前
qqq发布了新的文献求助10
28秒前
29秒前
李潇潇完成签到 ,获得积分10
30秒前
Ava应助笑点低方盒采纳,获得10
30秒前
31秒前
31秒前
胡航航发布了新的文献求助10
33秒前
乖猫要努力应助momo采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158