Development of a Novel Artificial Intelligence System for Laparoscopic Hepatectomy

医学 解剖(医学) 肝切除术 人工智能 深度学习 外科 计算机科学 切除术
作者
Kodai Tomioka,Takeshi Aoki,NAO KOBAYASHI,Yoshihiko Tashiro,Yuta Kumazu,Hideki Shibata,Takahito Hirai,Tatsuya Yamazaki,Kazuhiko Saito,Kimiyasu Yamazaki,Makoto Watanabe,Kazuhiro Matsuda,Tomokazu Kusano,Akira Fujimori,Yuta Enami
出处
期刊:Anticancer Research [International Institute of Anticancer Research (IIAR) Conferences 1997. Athens, Greece. Abstracts]
卷期号:43 (11): 5235-5243 被引量:2
标识
DOI:10.21873/anticanres.16725
摘要

Background/Aim: Laparoscopic hepatectomy (LH) requires accurate visualization and appropriate handling of hepatic veins and the Glissonean pedicle that suddenly appear during liver dissection. Failure to recognize these structures can cause injury, resulting in severe bleeding and bile leakage. This study aimed to develop a novel artificial intelligence (AI) system that assists in the visual recognition and color presentation of tubular structures to correct the recognition gap among surgeons. Patients and Methods: Annotations were performed on over 350 video frames capturing LH, after which a deep learning model was developed. The performance of the AI was evaluated quantitatively using intersection over union (IoU) and Dice coefficients, as well as qualitatively using a two-item questionnaire on sensitivity and misrecognition completed by 10 hepatobiliary surgeons. The usefulness of AI in medical education was qualitatively evaluated by 10 medical students and residents. Results: The AI model was able to individually recognize and colorize hepatic veins and the Glissonean pedicle in real time. The IoU and Dice coefficients were 0.42 and 0.53, respectively. Surgeons provided a mean sensitivity score of 4.24±0.89 (from 1 to 5; Excellent) and a mean misrecognition score of 0.12±0.33 (from 0 to 4; Fail). Medical students and residents assessed the AI to be very useful (mean usefulness score, 1.86±0.35; from 0 to 2; Excellent). Conclusion: The novel AI presented was able to assist surgeons in the intraoperative recognition of microstructures and address the recognition gap among surgeons to ensure a safer and more accurate LH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
豆芽发布了新的文献求助10
1秒前
oky发布了新的文献求助10
1秒前
wdy111应助迷路硬币采纳,获得20
3秒前
3秒前
4秒前
艺高人胆大鸡腿完成签到 ,获得积分10
7秒前
乐乐应助焦糖采纳,获得10
7秒前
科研通AI2S应助nalan采纳,获得10
8秒前
静_完成签到 ,获得积分10
8秒前
8秒前
雪白元蝶发布了新的文献求助10
9秒前
9秒前
9秒前
留白完成签到 ,获得积分10
10秒前
共享精神应助小圆采纳,获得10
10秒前
10秒前
慕青应助梵高的向日葵采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得20
10秒前
czh应助科研通管家采纳,获得10
10秒前
10秒前
ding应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
11秒前
彭于彦祖应助科研通管家采纳,获得10
11秒前
彭于彦祖应助科研通管家采纳,获得30
11秒前
雯雯完成签到,获得积分10
11秒前
11秒前
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
ED应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
CAOHOU应助科研通管家采纳,获得10
12秒前
quhayley应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Economic Geography and Public Policy 900
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021