Development of a Novel Artificial Intelligence System for Laparoscopic Hepatectomy

医学 解剖(医学) 肝切除术 人工智能 深度学习 外科 计算机科学 切除术
作者
Kodai Tomioka,Takeshi Aoki,NAO KOBAYASHI,Yoshihiko Tashiro,Yuta Kumazu,Hideki Shibata,Takahito Hirai,Tatsuya Yamazaki,Kazuhiko Saito,Kaoru Yamazaki,Makoto Watanabe,Kazuhiro Matsuda,Tomokazu Kusano,Akira Fujimori,Yuta Enami
出处
期刊:Anticancer Research [Anticancer Research USA Inc.]
卷期号:43 (11): 5235-5243 被引量:1
标识
DOI:10.21873/anticanres.16725
摘要

Background/Aim: Laparoscopic hepatectomy (LH) requires accurate visualization and appropriate handling of hepatic veins and the Glissonean pedicle that suddenly appear during liver dissection. Failure to recognize these structures can cause injury, resulting in severe bleeding and bile leakage. This study aimed to develop a novel artificial intelligence (AI) system that assists in the visual recognition and color presentation of tubular structures to correct the recognition gap among surgeons. Patients and Methods: Annotations were performed on over 350 video frames capturing LH, after which a deep learning model was developed. The performance of the AI was evaluated quantitatively using intersection over union (IoU) and Dice coefficients, as well as qualitatively using a two-item questionnaire on sensitivity and misrecognition completed by 10 hepatobiliary surgeons. The usefulness of AI in medical education was qualitatively evaluated by 10 medical students and residents. Results: The AI model was able to individually recognize and colorize hepatic veins and the Glissonean pedicle in real time. The IoU and Dice coefficients were 0.42 and 0.53, respectively. Surgeons provided a mean sensitivity score of 4.24±0.89 (from 1 to 5; Excellent) and a mean misrecognition score of 0.12±0.33 (from 0 to 4; Fail). Medical students and residents assessed the AI to be very useful (mean usefulness score, 1.86±0.35; from 0 to 2; Excellent). Conclusion: The novel AI presented was able to assist surgeons in the intraoperative recognition of microstructures and address the recognition gap among surgeons to ensure a safer and more accurate LH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FTM发布了新的文献求助10
1秒前
2秒前
3秒前
wangxiaobin完成签到,获得积分10
4秒前
6秒前
薰硝壤应助饱满的山菡采纳,获得30
7秒前
不眠的人完成签到,获得积分10
8秒前
小小白完成签到,获得积分20
8秒前
9秒前
10秒前
Null完成签到,获得积分10
10秒前
冷静战斗机完成签到,获得积分20
10秒前
米线ing发布了新的文献求助10
10秒前
zhuding1978完成签到,获得积分10
11秒前
adi完成签到,获得积分10
12秒前
13秒前
Worenxian完成签到,获得积分10
14秒前
尊敬的南烟完成签到,获得积分20
14秒前
诺贝尔一直讲获得者完成签到 ,获得积分10
15秒前
15秒前
52hezi完成签到,获得积分10
15秒前
FashionBoy应助曾经阁采纳,获得10
15秒前
打打应助eurus采纳,获得30
15秒前
szy发布了新的文献求助10
15秒前
科研通AI2S应助雪白冰萍采纳,获得10
17秒前
陈y完成签到 ,获得积分10
17秒前
浅尝离白应助畅快的涵蕾采纳,获得10
18秒前
华仔应助现代飞鸟采纳,获得10
18秒前
难过的飞丹完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
如意的绮兰完成签到 ,获得积分10
23秒前
23秒前
对方正在讲话完成签到,获得积分10
25秒前
友好白凡发布了新的文献求助10
27秒前
eurus发布了新的文献求助30
27秒前
27秒前
曾经阁发布了新的文献求助10
28秒前
顾矜应助ding采纳,获得30
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226