Usability Evaluation of a Knowledge Graph–Based Dementia Care Intelligent Recommender System: Mixed Methods Study

可用性 推荐系统 主题分析 计算机科学 痴呆 定性研究 定性性质 数据收集 万维网 应用心理学 知识管理 心理学 人机交互 医学 病理 社会科学 疾病 社会学 统计 数学 机器学习
作者
Minmin Leng,Yue Sun,Ce Li,Shuyu Han,Zhiwen Wang
出处
期刊:Journal of Medical Internet Research 卷期号:25: e45788-e45788
标识
DOI:10.2196/45788
摘要

Background Knowledge graph–based recommender systems offer the possibility of meeting the personalized needs of people with dementia and their caregivers. However, the usability of such a recommender system remains unknown. Objective This study aimed to evaluate the usability of a knowledge graph–based dementia care intelligent recommender system (DCIRS). Methods We used a convergent mixed methods design to conduct the usability evaluation, including the collection of quantitative and qualitative data. Participants were recruited through social media advertisements. After 2 weeks of DCIRS use, feedback was collected with the Computer System Usability Questionnaire and semistructured interviews. Descriptive statistics were used to describe sociodemographic characteristics and questionnaire scores. Qualitative data were analyzed systematically using inductive thematic analysis. Results A total of 56 caregivers were recruited. Quantitative data suggested that the DCIRS was easy for caregivers to use, and the mean questionnaire score was 2.14. Qualitative data showed that caregivers generally believed that the content of the DCIRS was professional, easy to understand, and instructive, and could meet users’ personalized needs; they were willing to continue to use it. However, the DCIRS also had some shortcomings. Functions that enable interactions between professionals and caregivers and that provide caregiver support and resource recommendations might be added to improve the system’s usability. Conclusions The recommender system provides a solution to meet the personalized needs of people with dementia and their caregivers and has the potential to substantially improve health outcomes. The next step will be to optimize and update the recommender system based on caregivers’ suggestions and evaluate the effect of the application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椿人完成签到 ,获得积分10
1秒前
何晶晶完成签到 ,获得积分10
1秒前
Lucas应助niuade采纳,获得10
2秒前
葛怀锐完成签到 ,获得积分10
2秒前
3秒前
Getlogger完成签到,获得积分10
4秒前
泽Y完成签到 ,获得积分10
4秒前
杨Yang完成签到 ,获得积分10
5秒前
燕子发布了新的文献求助10
6秒前
6秒前
董董完成签到 ,获得积分10
7秒前
酸菜炖粉条完成签到,获得积分10
7秒前
充电宝应助陈大咩采纳,获得30
8秒前
现实的帽子完成签到,获得积分10
8秒前
道友等等我完成签到,获得积分0
9秒前
忽忽完成签到,获得积分10
10秒前
0109完成签到,获得积分10
10秒前
niuade完成签到,获得积分10
10秒前
yyyyy发布了新的文献求助10
12秒前
jiayoujijin发布了新的文献求助10
13秒前
kk应助星河采纳,获得20
14秒前
kingwill应助涛涛子采纳,获得20
15秒前
16秒前
大模型应助qee采纳,获得10
16秒前
Haonan完成签到,获得积分10
16秒前
MingQue完成签到,获得积分10
17秒前
19秒前
ertredffg完成签到,获得积分10
20秒前
昀松完成签到,获得积分10
20秒前
jing完成签到,获得积分10
20秒前
sonicgoboy完成签到,获得积分10
20秒前
六初完成签到 ,获得积分10
21秒前
李朝富发布了新的文献求助10
22秒前
花花and富贵完成签到,获得积分20
22秒前
pauchiu完成签到,获得积分0
22秒前
雪白的千雁完成签到 ,获得积分10
24秒前
漂亮天真完成签到,获得积分10
24秒前
annafan应助科研通管家采纳,获得10
24秒前
遇见完成签到 ,获得积分10
26秒前
stuuuuuuuuuuudy完成签到 ,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466885
求助须知:如何正确求助?哪些是违规求助? 3059739
关于积分的说明 9067681
捐赠科研通 2750226
什么是DOI,文献DOI怎么找? 1509108
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696945