Skeleton-based action recognition based on multidimensional adaptive dynamic temporal graph convolutional network

计算机科学 RGB颜色模型 图形 卷积神经网络 模式识别(心理学) 人工智能 动作识别 拓扑(电路) 理论计算机科学 算法 数学 组合数学 班级(哲学)
作者
Yu Xia,Qingyuan Gao,Weiguan Wu,Yi Cao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107210-107210 被引量:15
标识
DOI:10.1016/j.engappai.2023.107210
摘要

Due to the superior capability to process the topology of graphs, graph convolutional networks are gaining popularity in the field of action recognition based on skeleton data. However, it remains difficult to effectively extract features with more distinguishing information for both spatial and temporal dimension. A novel multidimensional adaptive dynamic temporal graph convolutional network (MADT-GCN) model for skeleton-based action recognition is proposed in this work. It consists of two modules, one multidimensional adaptive graph convolutional network (MD-AGCN) module and one dynamic temporal convolutional network (DY-TCN) module. Firstly, MD-AGCN has the ability to adaptively change the graph topology in accordance with varieties of the layers and multidimensional information of spatial, temporal, and channel dimensions that are contained in various action samples to capture the complex connections of each couple of joints. Then, DY-TCN is proposed in order to boost the representation capability to capture expressive temporal features. Moreover, the information of both the joints and bones, together with their motion information, are simultaneously modeled in a multi-stream framework, which shows notable improvements in recognition accuracy. Finally, extensive experiments are conducted on two standard datasets, NTU-RGB+D and NTU-RGB+D 120. The experimental results demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小青椒应助刚刚采纳,获得10
2秒前
2秒前
2秒前
yan完成签到,获得积分10
2秒前
1101592875应助一路硕博采纳,获得10
3秒前
棋士应助一路硕博采纳,获得10
3秒前
ZZQ完成签到 ,获得积分10
3秒前
Jared应助一路硕博采纳,获得20
3秒前
无极微光应助一路硕博采纳,获得20
3秒前
共享精神应助麦当当薯条采纳,获得10
3秒前
YH关闭了YH文献求助
3秒前
无情南琴发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
打打应助文静采纳,获得10
4秒前
wjy发布了新的文献求助10
5秒前
子涵高完成签到,获得积分20
5秒前
5秒前
LINHY应助研友_8R5zBZ采纳,获得20
5秒前
6秒前
lijiao发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
小二郎应助hyominhsu采纳,获得10
7秒前
wanci应助无问采纳,获得10
7秒前
CKK应助maybe豪采纳,获得10
7秒前
yxy840325发布了新的文献求助10
7秒前
Jackson完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
Lgaga完成签到,获得积分10
9秒前
暗夜浮尘发布了新的文献求助10
9秒前
rooner发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791