Lithostratigraphy Modeling with Transformer-Based Deep Learning and Natural Language Processing Techniques

计算机科学 变压器 深度学习 嵌入 岩石地层学 人工智能 算法 地质学 构造盆地 工程类 电气工程 古生物学 电压
作者
Marcos Vinícius Gomes Jacinto,M. A. Silva,L. H. L. de Oliveira,David R. Medeiros,Gabriele Caires De Medeiros,T. C. Rodrigues,Leonardo Carvalho de Montalvão,Rafael Valladares de Almeida
标识
DOI:10.2118/216514-ms
摘要

Abstract In the Geosciences, sequence modeling algorithms such as long short-term memory - LSTM - have been widely used in various natural domains, like in earthquake and rainfall forecasting. A new architecture called Transformer has been used by the recent state-of-the-art models, capable of outperforming classical methods. Using this technology, this paper brings a modern approach that applies Transformers-based algorithms to solve a lithostratigraphy prediction challenge. We propose modifications to the original technique in order to embed geological information. In this sense, the lithological sequence is encoded as a sequence of integers and mapped by an embedding layer into a richer representation (a numerical vector per lithological element). We also incorporate the relative position of the lithological samples by adapting the original encoding. The database comprises four different wells located in the same onshore basin: two were used for training, one for validation and the last for test. They were filtered to guarantee that all wells’ data would have the same depth range. We ran 38 experiments with varying hyperparameters (number of transformer blocks, embedding size, learning rate and parallel attention heads). It was found that higher values of those variables indicate a higher model’s performance (in terms of F1-Score, Accuracy, Precision and Recall). The results achieved have accuracy and F1-Score concentrated between 0.89 and 0.92, showing consistency and good generalization capacity. Visually, we observe the model can approximate the lithostratigraphy within the geological wells’ context. Moreover, we developed 2 metrics in order to assess the model’s ability to detect lithological transitions, named ‘Transition Accuracy’ and ‘Expanded Transition Accuracy’. It was applied in 10 randomly selected intervals in the test data. Statistically, the ‘Expanded Transition Accuracy’ shows the model misses the transition in 0.3048 meters at most. Finally, we consider this paper presents a proof of concept in the use of transformer-based technologies for the modeling and prediction of lithostratigraphic sequences, a successful adaptation of NLP techniques to solve a geoscientific challenge.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助安an采纳,获得10
1秒前
2秒前
LL完成签到 ,获得积分10
2秒前
2秒前
汉堡包应助YHYHYH采纳,获得10
2秒前
shuang完成签到,获得积分10
3秒前
雪白的若翠完成签到,获得积分10
3秒前
jinyu发布了新的文献求助10
4秒前
小美妞发布了新的文献求助10
4秒前
4秒前
lyn完成签到,获得积分10
4秒前
ANHYPNIA发布了新的文献求助10
5秒前
有志青年关注了科研通微信公众号
5秒前
Jo完成签到,获得积分10
5秒前
Lucas应助自信安荷采纳,获得10
6秒前
Orange应助bbecky采纳,获得30
7秒前
凤凰涅槃完成签到 ,获得积分10
7秒前
8秒前
毅诚菌完成签到 ,获得积分10
9秒前
九五九发布了新的文献求助10
9秒前
9秒前
9秒前
11秒前
春日发布了新的文献求助10
11秒前
小马甲应助Maisyuki采纳,获得10
11秒前
WSZXQ发布了新的文献求助10
11秒前
CodeCraft应助高兴冬灵采纳,获得10
12秒前
12秒前
13秒前
狱颐鸣鸣完成签到,获得积分10
13秒前
橙子快跑发布了新的文献求助10
13秒前
今夜无人入眠完成签到,获得积分10
13秒前
13秒前
ANHYPNIA完成签到,获得积分10
14秒前
14秒前
98发布了新的文献求助10
15秒前
15秒前
lyh发布了新的文献求助20
16秒前
xff关闭了xff文献求助
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligomycin, a new antifungal antibiotic 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3583640
求助须知:如何正确求助?哪些是违规求助? 3152886
关于积分的说明 9494504
捐赠科研通 2855533
什么是DOI,文献DOI怎么找? 1569583
邀请新用户注册赠送积分活动 735428
科研通“疑难数据库(出版商)”最低求助积分说明 721228