已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lithostratigraphy Modeling with Transformer-Based Deep Learning and Natural Language Processing Techniques

计算机科学 变压器 深度学习 嵌入 岩石地层学 人工智能 算法 地质学 构造盆地 工程类 电气工程 古生物学 电压
作者
Marcos Vinícius Gomes Jacinto,M. A. Silva,L. H. L. de Oliveira,David R. Medeiros,Gabriele Caires De Medeiros,T. C. Rodrigues,Leonardo Carvalho de Montalvão,Rafael Valladares de Almeida
标识
DOI:10.2118/216514-ms
摘要

Abstract In the Geosciences, sequence modeling algorithms such as long short-term memory - LSTM - have been widely used in various natural domains, like in earthquake and rainfall forecasting. A new architecture called Transformer has been used by the recent state-of-the-art models, capable of outperforming classical methods. Using this technology, this paper brings a modern approach that applies Transformers-based algorithms to solve a lithostratigraphy prediction challenge. We propose modifications to the original technique in order to embed geological information. In this sense, the lithological sequence is encoded as a sequence of integers and mapped by an embedding layer into a richer representation (a numerical vector per lithological element). We also incorporate the relative position of the lithological samples by adapting the original encoding. The database comprises four different wells located in the same onshore basin: two were used for training, one for validation and the last for test. They were filtered to guarantee that all wells’ data would have the same depth range. We ran 38 experiments with varying hyperparameters (number of transformer blocks, embedding size, learning rate and parallel attention heads). It was found that higher values of those variables indicate a higher model’s performance (in terms of F1-Score, Accuracy, Precision and Recall). The results achieved have accuracy and F1-Score concentrated between 0.89 and 0.92, showing consistency and good generalization capacity. Visually, we observe the model can approximate the lithostratigraphy within the geological wells’ context. Moreover, we developed 2 metrics in order to assess the model’s ability to detect lithological transitions, named ‘Transition Accuracy’ and ‘Expanded Transition Accuracy’. It was applied in 10 randomly selected intervals in the test data. Statistically, the ‘Expanded Transition Accuracy’ shows the model misses the transition in 0.3048 meters at most. Finally, we consider this paper presents a proof of concept in the use of transformer-based technologies for the modeling and prediction of lithostratigraphic sequences, a successful adaptation of NLP techniques to solve a geoscientific challenge.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
betterme完成签到,获得积分10
2秒前
贪玩的谷芹完成签到 ,获得积分10
3秒前
小单完成签到 ,获得积分10
4秒前
4秒前
4秒前
7秒前
laolaolao发布了新的文献求助10
9秒前
10秒前
智高兴发布了新的文献求助10
11秒前
12秒前
ilovelr发布了新的文献求助30
12秒前
991256发布了新的文献求助10
13秒前
乐观香寒完成签到 ,获得积分10
14秒前
柴胡发布了新的文献求助10
14秒前
15秒前
15秒前
白小超人完成签到 ,获得积分10
15秒前
星辰大海应助宁海采纳,获得10
16秒前
女爰舍予完成签到 ,获得积分10
16秒前
忆茶戏完成签到 ,获得积分10
19秒前
22秒前
爆米花应助ilovelr采纳,获得50
28秒前
柴胡完成签到,获得积分10
29秒前
砥砺前行完成签到 ,获得积分10
30秒前
呼噜呼噜毛完成签到 ,获得积分10
31秒前
哩哩完成签到 ,获得积分10
34秒前
蛋堡完成签到 ,获得积分10
34秒前
40秒前
42秒前
43秒前
44秒前
45秒前
111222333发布了新的文献求助10
46秒前
苹什猫发布了新的文献求助10
46秒前
哈哈哈发布了新的文献求助30
47秒前
LC完成签到 ,获得积分10
47秒前
49秒前
HMYX完成签到 ,获得积分10
53秒前
54秒前
Judy完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674687
关于积分的说明 14795015
捐赠科研通 4631029
什么是DOI,文献DOI怎么找? 2532659
邀请新用户注册赠送积分活动 1501235
关于科研通互助平台的介绍 1468581