Lithostratigraphy Modeling with Transformer-Based Deep Learning and Natural Language Processing Techniques

计算机科学 变压器 深度学习 嵌入 岩石地层学 人工智能 算法 地质学 构造盆地 工程类 电气工程 古生物学 电压
作者
Marcos Vinícius Gomes Jacinto,M. A. Silva,L. H. L. de Oliveira,David R. Medeiros,Gabriele Caires De Medeiros,T. C. Rodrigues,Leonardo Carvalho de Montalvão,Rafael Valladares de Almeida
标识
DOI:10.2118/216514-ms
摘要

Abstract In the Geosciences, sequence modeling algorithms such as long short-term memory - LSTM - have been widely used in various natural domains, like in earthquake and rainfall forecasting. A new architecture called Transformer has been used by the recent state-of-the-art models, capable of outperforming classical methods. Using this technology, this paper brings a modern approach that applies Transformers-based algorithms to solve a lithostratigraphy prediction challenge. We propose modifications to the original technique in order to embed geological information. In this sense, the lithological sequence is encoded as a sequence of integers and mapped by an embedding layer into a richer representation (a numerical vector per lithological element). We also incorporate the relative position of the lithological samples by adapting the original encoding. The database comprises four different wells located in the same onshore basin: two were used for training, one for validation and the last for test. They were filtered to guarantee that all wells’ data would have the same depth range. We ran 38 experiments with varying hyperparameters (number of transformer blocks, embedding size, learning rate and parallel attention heads). It was found that higher values of those variables indicate a higher model’s performance (in terms of F1-Score, Accuracy, Precision and Recall). The results achieved have accuracy and F1-Score concentrated between 0.89 and 0.92, showing consistency and good generalization capacity. Visually, we observe the model can approximate the lithostratigraphy within the geological wells’ context. Moreover, we developed 2 metrics in order to assess the model’s ability to detect lithological transitions, named ‘Transition Accuracy’ and ‘Expanded Transition Accuracy’. It was applied in 10 randomly selected intervals in the test data. Statistically, the ‘Expanded Transition Accuracy’ shows the model misses the transition in 0.3048 meters at most. Finally, we consider this paper presents a proof of concept in the use of transformer-based technologies for the modeling and prediction of lithostratigraphic sequences, a successful adaptation of NLP techniques to solve a geoscientific challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山河发布了新的文献求助10
1秒前
芊芊完成签到 ,获得积分0
1秒前
8R60d8应助研友_n0Dmwn采纳,获得10
1秒前
1秒前
赵赵完成签到,获得积分10
1秒前
小周周完成签到,获得积分10
3秒前
andy完成签到,获得积分10
3秒前
4秒前
5秒前
李健的粉丝团团长应助jah采纳,获得10
5秒前
周士翔发布了新的文献求助10
5秒前
璐璐发布了新的文献求助10
6秒前
科目三应助吴丹璇采纳,获得10
6秒前
6秒前
6秒前
英姑应助cyrong采纳,获得10
7秒前
wait发布了新的文献求助10
7秒前
李麟发布了新的文献求助10
8秒前
8秒前
俏皮老四完成签到,获得积分10
8秒前
9秒前
危机的夏兰完成签到,获得积分10
9秒前
vida完成签到 ,获得积分10
10秒前
情怀应助impgod采纳,获得10
13秒前
wawu完成签到 ,获得积分10
13秒前
王云发布了新的文献求助10
14秒前
15秒前
酷波er应助李麟采纳,获得10
15秒前
吕武全发布了新的文献求助10
15秒前
16秒前
16秒前
深情安青应助辛禹采纳,获得10
16秒前
16秒前
kk应助研two采纳,获得20
17秒前
科研通AI6应助当晚星散落采纳,获得10
18秒前
18秒前
吴丹璇发布了新的文献求助10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
在水一方应助ddd采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5158753
求助须知:如何正确求助?哪些是违规求助? 4353445
关于积分的说明 13555595
捐赠科研通 4196908
什么是DOI,文献DOI怎么找? 2301885
邀请新用户注册赠送积分活动 1301840
关于科研通互助平台的介绍 1246880