Lithostratigraphy Modeling with Transformer-Based Deep Learning and Natural Language Processing Techniques

计算机科学 变压器 深度学习 嵌入 岩石地层学 人工智能 算法 地质学 构造盆地 工程类 电气工程 古生物学 电压
作者
Marcos Vinícius Gomes Jacinto,M. A. Silva,L. H. L. de Oliveira,David R. Medeiros,Gabriele Caires De Medeiros,T. C. Rodrigues,Leonardo Carvalho de Montalvão,Rafael Valladares de Almeida
标识
DOI:10.2118/216514-ms
摘要

Abstract In the Geosciences, sequence modeling algorithms such as long short-term memory - LSTM - have been widely used in various natural domains, like in earthquake and rainfall forecasting. A new architecture called Transformer has been used by the recent state-of-the-art models, capable of outperforming classical methods. Using this technology, this paper brings a modern approach that applies Transformers-based algorithms to solve a lithostratigraphy prediction challenge. We propose modifications to the original technique in order to embed geological information. In this sense, the lithological sequence is encoded as a sequence of integers and mapped by an embedding layer into a richer representation (a numerical vector per lithological element). We also incorporate the relative position of the lithological samples by adapting the original encoding. The database comprises four different wells located in the same onshore basin: two were used for training, one for validation and the last for test. They were filtered to guarantee that all wells’ data would have the same depth range. We ran 38 experiments with varying hyperparameters (number of transformer blocks, embedding size, learning rate and parallel attention heads). It was found that higher values of those variables indicate a higher model’s performance (in terms of F1-Score, Accuracy, Precision and Recall). The results achieved have accuracy and F1-Score concentrated between 0.89 and 0.92, showing consistency and good generalization capacity. Visually, we observe the model can approximate the lithostratigraphy within the geological wells’ context. Moreover, we developed 2 metrics in order to assess the model’s ability to detect lithological transitions, named ‘Transition Accuracy’ and ‘Expanded Transition Accuracy’. It was applied in 10 randomly selected intervals in the test data. Statistically, the ‘Expanded Transition Accuracy’ shows the model misses the transition in 0.3048 meters at most. Finally, we consider this paper presents a proof of concept in the use of transformer-based technologies for the modeling and prediction of lithostratigraphic sequences, a successful adaptation of NLP techniques to solve a geoscientific challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andy完成签到,获得积分10
1秒前
ssffzb2008完成签到,获得积分10
1秒前
鸿来发布了新的文献求助10
2秒前
李玢琪发布了新的文献求助10
2秒前
覃思思完成签到,获得积分10
2秒前
机灵水卉完成签到 ,获得积分10
2秒前
3秒前
3秒前
冬雪丶消融应助舒适静丹采纳,获得10
3秒前
doudou完成签到 ,获得积分10
3秒前
科研椰子发布了新的文献求助10
3秒前
科研通AI5应助橘子采纳,获得10
4秒前
GGG发布了新的文献求助10
4秒前
mm完成签到,获得积分10
4秒前
风清扬发布了新的文献求助10
6秒前
浮游应助zimuxinxin采纳,获得10
6秒前
6秒前
打打应助无所吊谓采纳,获得10
6秒前
任性的小C完成签到,获得积分20
6秒前
柳树完成签到,获得积分10
7秒前
lsc完成签到,获得积分10
7秒前
8秒前
8秒前
科研通AI2S应助猪米妮采纳,获得10
8秒前
脑洞疼应助zhengxinyang采纳,获得10
9秒前
hhh完成签到,获得积分10
9秒前
科研通AI6应助xxx采纳,获得10
10秒前
雅米完成签到,获得积分10
10秒前
任性的小C发布了新的文献求助10
11秒前
CipherSage应助饱满不斜采纳,获得10
11秒前
浮游应助yali采纳,获得10
11秒前
天天好心覃完成签到 ,获得积分10
11秒前
浮游应助zimuxinxin采纳,获得10
12秒前
Anthony完成签到,获得积分10
13秒前
Sisyphus完成签到,获得积分10
13秒前
14秒前
123发布了新的文献求助10
14秒前
浮游应助SUNYAOSUNYAO采纳,获得10
14秒前
15秒前
李爱国应助xhtnt97采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4992878
求助须知:如何正确求助?哪些是违规求助? 4240810
关于积分的说明 13212439
捐赠科研通 4036159
什么是DOI,文献DOI怎么找? 2208306
邀请新用户注册赠送积分活动 1219242
关于科研通互助平台的介绍 1137557