Lithostratigraphy Modeling with Transformer-Based Deep Learning and Natural Language Processing Techniques

计算机科学 变压器 深度学习 嵌入 岩石地层学 人工智能 算法 地质学 构造盆地 工程类 古生物学 电压 电气工程
作者
Marcos Vinícius Gomes Jacinto,M. A. Silva,L. H. L. de Oliveira,David R. Medeiros,Gabriele Caires De Medeiros,T. C. Rodrigues,Leonardo Carvalho de Montalvão,Rafael Valladares de Almeida
标识
DOI:10.2118/216514-ms
摘要

Abstract In the Geosciences, sequence modeling algorithms such as long short-term memory - LSTM - have been widely used in various natural domains, like in earthquake and rainfall forecasting. A new architecture called Transformer has been used by the recent state-of-the-art models, capable of outperforming classical methods. Using this technology, this paper brings a modern approach that applies Transformers-based algorithms to solve a lithostratigraphy prediction challenge. We propose modifications to the original technique in order to embed geological information. In this sense, the lithological sequence is encoded as a sequence of integers and mapped by an embedding layer into a richer representation (a numerical vector per lithological element). We also incorporate the relative position of the lithological samples by adapting the original encoding. The database comprises four different wells located in the same onshore basin: two were used for training, one for validation and the last for test. They were filtered to guarantee that all wells’ data would have the same depth range. We ran 38 experiments with varying hyperparameters (number of transformer blocks, embedding size, learning rate and parallel attention heads). It was found that higher values of those variables indicate a higher model’s performance (in terms of F1-Score, Accuracy, Precision and Recall). The results achieved have accuracy and F1-Score concentrated between 0.89 and 0.92, showing consistency and good generalization capacity. Visually, we observe the model can approximate the lithostratigraphy within the geological wells’ context. Moreover, we developed 2 metrics in order to assess the model’s ability to detect lithological transitions, named ‘Transition Accuracy’ and ‘Expanded Transition Accuracy’. It was applied in 10 randomly selected intervals in the test data. Statistically, the ‘Expanded Transition Accuracy’ shows the model misses the transition in 0.3048 meters at most. Finally, we consider this paper presents a proof of concept in the use of transformer-based technologies for the modeling and prediction of lithostratigraphic sequences, a successful adaptation of NLP techniques to solve a geoscientific challenge.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lunjiang发布了新的文献求助10
1秒前
clueless发布了新的文献求助10
1秒前
务实青筠发布了新的文献求助10
1秒前
1秒前
Z小姐完成签到 ,获得积分10
2秒前
ji发布了新的文献求助10
3秒前
fairy完成签到 ,获得积分10
3秒前
朱朱完成签到,获得积分10
4秒前
gddaebh发布了新的文献求助10
4秒前
黑胡子完成签到,获得积分20
4秒前
科研通AI6应助one_more_thing采纳,获得10
5秒前
王sy完成签到 ,获得积分10
5秒前
琳里欧发布了新的文献求助20
5秒前
顽主完成签到,获得积分0
5秒前
5秒前
5秒前
6秒前
白潇潇发布了新的文献求助10
6秒前
朱朱发布了新的文献求助10
7秒前
8秒前
琦_完成签到,获得积分10
9秒前
xialian完成签到,获得积分10
9秒前
lzn发布了新的文献求助10
9秒前
AAA发布了新的文献求助10
10秒前
孤独的自中完成签到,获得积分10
10秒前
10秒前
朴实一曲应助fhghhhjh采纳,获得10
10秒前
香蕉诗蕊应助pinkangel采纳,获得10
11秒前
Jiro完成签到,获得积分10
12秒前
BowieHuang应助学术老6采纳,获得10
12秒前
执着的飞荷关注了科研通微信公众号
12秒前
13秒前
寄语明月发布了新的文献求助10
13秒前
wywy发布了新的文献求助10
13秒前
15秒前
15秒前
科研通AI6应助one_more_thing采纳,获得10
15秒前
17秒前
王欧尼发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643591
求助须知:如何正确求助?哪些是违规求助? 4761418
关于积分的说明 15021120
捐赠科研通 4801844
什么是DOI,文献DOI怎么找? 2567087
邀请新用户注册赠送积分活动 1524843
关于科研通互助平台的介绍 1484403