A mixing algorithm of ACO and ABC for solving path planning of mobile robot

蚁群优化算法 运动规划 人工蜂群算法 计算机科学 路径(计算) 算法 启发式 趋同(经济学) 数学优化 路径长度 管道(软件) 移动机器人 人工智能 蚁群 机器人 数学 经济 经济增长 程序设计语言 计算机网络
作者
Guangxin Li,Chao Liu,Lei Wu,Wensheng Xiao
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:148: 110868-110868 被引量:41
标识
DOI:10.1016/j.asoc.2023.110868
摘要

Path planning is involved in many applications such as trajectory planning, mobile robotics, pipeline layout, etc. Researchers use artificial intelligence algorithms to solve path planning efficiently, among which the ant colony algorithm (ACO) is one of the common intelligent algorithms to solve path planning problems. However, the traditional ACO has defects such as low early search efficiency and easy to fall into local optimum, while the artificial bee colony algorithm (ABC) has high search efficiency. Therefore, an improved ant colony optimization-artificial bee colony algorithm (IACO-IABC) is proposed in this study. IACO-IABC contains three mechanisms. First, the heuristic mechanism with directional information for the ACO is improved to enhance the efficiency of steering towards the target direction. Secondly, the novel neighborhood search mechanism of the employed bee and the onlooker bee in the ABC is presented to enhance the exploitation of optimal solutions. Then, the path optimization mechanism is introduced further to reduce the number of turn times in the planned path. To verify the performance of the IACO-IABC, a series of experiments are conducted with 10 different maps. The experiments compare nine variants of ACO and eight commonly used intelligent search algorithms, and the results show the advantages of the IACO-IABC in reducing the number of turn times and path lengths and enhancing the convergence speed of the algorithm. Compared to the best results of other algorithms, the average improvement percentages of the proposed algorithm in terms of the path turn times are 375%, 258.33%, 483.33%, 186.67%, 166.77% and 255.33%, further demonstrating the ability of IACO-IABC to obtain high-quality path planning result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liars发布了新的文献求助10
1秒前
shirai20001发布了新的文献求助10
2秒前
传奇3应助皮崇知采纳,获得10
3秒前
3秒前
赘婿应助Fiona采纳,获得10
4秒前
8秒前
10秒前
yy完成签到 ,获得积分10
13秒前
脆脆Shark发布了新的文献求助10
14秒前
14秒前
16秒前
ding应助LZ采纳,获得10
16秒前
shelley发布了新的文献求助10
17秒前
17秒前
幸福大白发布了新的文献求助30
17秒前
19秒前
个性的翠芙完成签到,获得积分10
19秒前
lianchen发布了新的文献求助100
19秒前
皮崇知发布了新的文献求助10
21秒前
SciGPT应助有机分子笼采纳,获得10
22秒前
宇文一发布了新的文献求助20
24秒前
老王发布了新的文献求助10
25秒前
26秒前
QXS完成签到 ,获得积分10
27秒前
tiger完成签到,获得积分10
28秒前
墨羽完成签到,获得积分10
28秒前
幸福大白发布了新的文献求助10
29秒前
汤泽琪发布了新的文献求助10
32秒前
lss完成签到,获得积分10
33秒前
askldj完成签到 ,获得积分20
35秒前
36秒前
36秒前
苗条妙旋发布了新的文献求助200
37秒前
37秒前
老王完成签到,获得积分10
38秒前
hsm完成签到,获得积分10
40秒前
41秒前
田様应助111采纳,获得10
42秒前
玛卡巴卡完成签到 ,获得积分10
42秒前
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993503
求助须知:如何正确求助?哪些是违规求助? 3534194
关于积分的说明 11264895
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806259
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809702