A mixing algorithm of ACO and ABC for solving path planning of mobile robot

蚁群优化算法 运动规划 人工蜂群算法 计算机科学 路径(计算) 算法 启发式 趋同(经济学) 数学优化 路径长度 管道(软件) 移动机器人 人工智能 蚁群 机器人 数学 经济 经济增长 程序设计语言 计算机网络
作者
Guangxin Li,Chao Liu,Lei Wu,Wensheng Xiao
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110868-110868 被引量:59
标识
DOI:10.1016/j.asoc.2023.110868
摘要

Path planning is involved in many applications such as trajectory planning, mobile robotics, pipeline layout, etc. Researchers use artificial intelligence algorithms to solve path planning efficiently, among which the ant colony algorithm (ACO) is one of the common intelligent algorithms to solve path planning problems. However, the traditional ACO has defects such as low early search efficiency and easy to fall into local optimum, while the artificial bee colony algorithm (ABC) has high search efficiency. Therefore, an improved ant colony optimization-artificial bee colony algorithm (IACO-IABC) is proposed in this study. IACO-IABC contains three mechanisms. First, the heuristic mechanism with directional information for the ACO is improved to enhance the efficiency of steering towards the target direction. Secondly, the novel neighborhood search mechanism of the employed bee and the onlooker bee in the ABC is presented to enhance the exploitation of optimal solutions. Then, the path optimization mechanism is introduced further to reduce the number of turn times in the planned path. To verify the performance of the IACO-IABC, a series of experiments are conducted with 10 different maps. The experiments compare nine variants of ACO and eight commonly used intelligent search algorithms, and the results show the advantages of the IACO-IABC in reducing the number of turn times and path lengths and enhancing the convergence speed of the algorithm. Compared to the best results of other algorithms, the average improvement percentages of the proposed algorithm in terms of the path turn times are 375%, 258.33%, 483.33%, 186.67%, 166.77% and 255.33%, further demonstrating the ability of IACO-IABC to obtain high-quality path planning result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亗sui发布了新的文献求助10
刚刚
1秒前
英姑应助三只兔子采纳,获得10
1秒前
ash发布了新的文献求助10
1秒前
1秒前
古风发布了新的文献求助10
1秒前
2秒前
幽默书瑶发布了新的文献求助10
4秒前
大个应助xiaodu采纳,获得10
6秒前
123发布了新的文献求助10
6秒前
zdd完成签到,获得积分10
6秒前
自洽发布了新的文献求助10
7秒前
power完成签到,获得积分10
7秒前
亗sui完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
赘婿应助侠侠大王采纳,获得10
10秒前
12秒前
12秒前
舒服的寒松完成签到 ,获得积分10
12秒前
大方的乌冬面完成签到 ,获得积分10
13秒前
伶俐黄豆应助xiaobai123456采纳,获得10
14秒前
Inevitable发布了新的文献求助10
14秒前
调皮的笑阳完成签到 ,获得积分10
14秒前
15秒前
19秒前
脑洞疼应助hh采纳,获得10
19秒前
由凡发布了新的文献求助10
20秒前
20秒前
Mic应助ash采纳,获得10
21秒前
CorrectSTH完成签到,获得积分10
23秒前
Owen应助xiao采纳,获得10
25秒前
25秒前
zoushiyi完成签到 ,获得积分10
28秒前
Inevitable完成签到,获得积分10
29秒前
29秒前
禾风完成签到,获得积分10
29秒前
地形图完成签到 ,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5842960
求助须知:如何正确求助?哪些是违规求助? 6177670
关于积分的说明 15610714
捐赠科研通 4960102
什么是DOI,文献DOI怎么找? 2674103
邀请新用户注册赠送积分活动 1618937
关于科研通互助平台的介绍 1574172