A mixing algorithm of ACO and ABC for solving path planning of mobile robot

蚁群优化算法 运动规划 人工蜂群算法 计算机科学 路径(计算) 算法 启发式 趋同(经济学) 数学优化 路径长度 管道(软件) 移动机器人 人工智能 蚁群 机器人 数学 经济 经济增长 程序设计语言 计算机网络
作者
Guangxin Li,Chao Liu,Lei Wu,Wensheng Xiao
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110868-110868 被引量:59
标识
DOI:10.1016/j.asoc.2023.110868
摘要

Path planning is involved in many applications such as trajectory planning, mobile robotics, pipeline layout, etc. Researchers use artificial intelligence algorithms to solve path planning efficiently, among which the ant colony algorithm (ACO) is one of the common intelligent algorithms to solve path planning problems. However, the traditional ACO has defects such as low early search efficiency and easy to fall into local optimum, while the artificial bee colony algorithm (ABC) has high search efficiency. Therefore, an improved ant colony optimization-artificial bee colony algorithm (IACO-IABC) is proposed in this study. IACO-IABC contains three mechanisms. First, the heuristic mechanism with directional information for the ACO is improved to enhance the efficiency of steering towards the target direction. Secondly, the novel neighborhood search mechanism of the employed bee and the onlooker bee in the ABC is presented to enhance the exploitation of optimal solutions. Then, the path optimization mechanism is introduced further to reduce the number of turn times in the planned path. To verify the performance of the IACO-IABC, a series of experiments are conducted with 10 different maps. The experiments compare nine variants of ACO and eight commonly used intelligent search algorithms, and the results show the advantages of the IACO-IABC in reducing the number of turn times and path lengths and enhancing the convergence speed of the algorithm. Compared to the best results of other algorithms, the average improvement percentages of the proposed algorithm in terms of the path turn times are 375%, 258.33%, 483.33%, 186.67%, 166.77% and 255.33%, further demonstrating the ability of IACO-IABC to obtain high-quality path planning result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
玥来玥好发布了新的文献求助10
2秒前
蓝天发布了新的文献求助10
2秒前
3秒前
善学以致用应助啦啦啦采纳,获得10
4秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
spridrop关注了科研通微信公众号
7秒前
七月晴发布了新的文献求助10
8秒前
10秒前
OFish完成签到,获得积分10
10秒前
英姑应助彩虹捕手采纳,获得10
11秒前
充电宝应助蓦然采纳,获得10
11秒前
11秒前
222123发布了新的文献求助10
11秒前
12秒前
半_发布了新的文献求助10
12秒前
紫文完成签到 ,获得积分10
12秒前
今后应助搞怪访烟采纳,获得10
12秒前
科研通AI6应助yuchao_0110采纳,获得30
14秒前
15秒前
孤单的您发布了新的文献求助10
15秒前
17秒前
蓝星完成签到,获得积分10
17秒前
18秒前
18秒前
哆啦B梦完成签到,获得积分10
18秒前
19秒前
Thi发布了新的文献求助10
19秒前
长情听南发布了新的文献求助20
19秒前
20秒前
精明尔曼完成签到,获得积分10
21秒前
22秒前
23秒前
彩虹捕手发布了新的文献求助10
24秒前
赘婿应助starry采纳,获得10
24秒前
达瓦里希完成签到 ,获得积分10
25秒前
3927456843发布了新的文献求助30
25秒前
CuO完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704