已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning for modeling N2O emissions from wastewater treatment plants: Aligning model performance, complexity, and interpretability

可解释性 机器学习 计算机科学 人工智能 特征选择 过程(计算) 特征(语言学) 人工神经网络 选型 数据挖掘 哲学 语言学 操作系统
作者
Mostafa Khalil,Ahmed AlSayed,Yang Liu,Peter A. Vanrolleghem
出处
期刊:Water Research [Elsevier]
卷期号:245: 120667-120667 被引量:25
标识
DOI:10.1016/j.watres.2023.120667
摘要

Nitrous oxide (N2O) emissions may account for up to 80 % of a wastewater treatment plant's (WWTP) total carbon footprint. Given the complexity of the pathways involved, estimating N2O emissions through mechanistic models still often fails to precisely depict process dynamics. Alternatively, data-driven methods for predicting N2O emissions hold substantial potential. However, so far, a comprehensive approach is still overlooked, impeding the advancement of full-scale application. Therefore, this study develops a comprehensive approach for using machine learning to perform online process modeling of N2O emissions. The approach is tested on a long-term N2O emission dataset from a full-scale WWTP. Uniquely, the proposed approach emphasizes not just model accuracy, but it also considers model complexity, computational speed, and interpretability, equipping operators with the insights needed for informed corrective actions. Algorithms with varying levels of complexity and interpretability including k-Nearest Neighbors (kNN), decision trees, ensemble learning models, and deep neural networks (DNN) were considered. Furthermore, a parametric multivariate outlier removal method was adjusted to account for data statistical distributions, significantly reducing data loss. By employing an effective feature selection methodology, a trade-off between data acquisition, model performance, and complexity was found, reducing the number of features by 40 % and decreasing data collection cost, model complexity and computational burden without significant effect on modeling accuracy. The best performing models are kNN (R2 = 0.88), AdaBoost (R2 = 0.94), and DNN (R2 = 0.90). Feature importance of models was analyzed and compared with process knowledge to test interpretability, guiding N2O mitigation decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助完美世界采纳,获得10
2秒前
美满疾应助温暖砖头采纳,获得10
3秒前
我是老大应助Sherry采纳,获得10
4秒前
竹马发布了新的文献求助10
4秒前
烟花应助yangmiemie采纳,获得10
4秒前
乐乐应助传统的元龙采纳,获得10
6秒前
漱玉完成签到,获得积分10
14秒前
wyi完成签到,获得积分10
16秒前
缥缈项链完成签到,获得积分10
18秒前
26秒前
邓娅琴完成签到 ,获得积分10
26秒前
29秒前
大海完成签到,获得积分10
31秒前
老谢完成签到,获得积分10
33秒前
嗒嗒完成签到,获得积分10
34秒前
pcr163应助科研通管家采纳,获得100
36秒前
VDC应助科研通管家采纳,获得30
36秒前
Hello应助科研通管家采纳,获得10
36秒前
爆米花应助科研通管家采纳,获得10
36秒前
36秒前
共享精神应助科研通管家采纳,获得10
37秒前
37秒前
谨慎若雁发布了新的文献求助10
37秒前
shenmo18完成签到,获得积分10
38秒前
zly发布了新的文献求助10
39秒前
Owen应助搜索采纳,获得10
41秒前
41秒前
所所应助我要搞科研采纳,获得10
43秒前
海盐芝士发布了新的文献求助10
44秒前
晗晗子完成签到,获得积分10
45秒前
49秒前
50秒前
51秒前
51秒前
SiO2完成签到 ,获得积分10
53秒前
Sherry发布了新的文献求助10
53秒前
54秒前
科研兄发布了新的文献求助10
55秒前
habitatyu完成签到,获得积分10
57秒前
善学以致用应助wu采纳,获得10
58秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343899
求助须知:如何正确求助?哪些是违规求助? 2970985
关于积分的说明 8646010
捐赠科研通 2651054
什么是DOI,文献DOI怎么找? 1451637
科研通“疑难数据库(出版商)”最低求助积分说明 672209
邀请新用户注册赠送积分活动 661703