亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for modeling N2O emissions from wastewater treatment plants: Aligning model performance, complexity, and interpretability

可解释性 机器学习 计算机科学 人工智能 特征选择 过程(计算) 特征(语言学) 人工神经网络 选型 数据挖掘 语言学 操作系统 哲学
作者
Mostafa Khalil,Ahmed AlSayed,Yang Liu,Peter A. Vanrolleghem
出处
期刊:Water Research [Elsevier BV]
卷期号:245: 120667-120667 被引量:25
标识
DOI:10.1016/j.watres.2023.120667
摘要

Nitrous oxide (N2O) emissions may account for up to 80 % of a wastewater treatment plant's (WWTP) total carbon footprint. Given the complexity of the pathways involved, estimating N2O emissions through mechanistic models still often fails to precisely depict process dynamics. Alternatively, data-driven methods for predicting N2O emissions hold substantial potential. However, so far, a comprehensive approach is still overlooked, impeding the advancement of full-scale application. Therefore, this study develops a comprehensive approach for using machine learning to perform online process modeling of N2O emissions. The approach is tested on a long-term N2O emission dataset from a full-scale WWTP. Uniquely, the proposed approach emphasizes not just model accuracy, but it also considers model complexity, computational speed, and interpretability, equipping operators with the insights needed for informed corrective actions. Algorithms with varying levels of complexity and interpretability including k-Nearest Neighbors (kNN), decision trees, ensemble learning models, and deep neural networks (DNN) were considered. Furthermore, a parametric multivariate outlier removal method was adjusted to account for data statistical distributions, significantly reducing data loss. By employing an effective feature selection methodology, a trade-off between data acquisition, model performance, and complexity was found, reducing the number of features by 40 % and decreasing data collection cost, model complexity and computational burden without significant effect on modeling accuracy. The best performing models are kNN (R2 = 0.88), AdaBoost (R2 = 0.94), and DNN (R2 = 0.90). Feature importance of models was analyzed and compared with process knowledge to test interpretability, guiding N2O mitigation decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉皮发布了新的文献求助10
5秒前
7秒前
甜蜜水蜜桃完成签到 ,获得积分10
11秒前
婼汐完成签到 ,获得积分10
24秒前
科研通AI5应助feifei采纳,获得10
46秒前
1分钟前
1分钟前
1分钟前
1分钟前
hongtao完成签到 ,获得积分10
1分钟前
半城微凉应助科研通管家采纳,获得10
2分钟前
2分钟前
可爱的函函应助zzzsh采纳,获得10
2分钟前
2分钟前
guoze发布了新的文献求助10
2分钟前
snail完成签到,获得积分10
2分钟前
3分钟前
556发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
guoze发布了新的文献求助30
3分钟前
爱听歌书芹关注了科研通微信公众号
3分钟前
平淡如天完成签到,获得积分10
3分钟前
KSung完成签到 ,获得积分10
3分钟前
大模型应助Jason采纳,获得10
3分钟前
tishe7发布了新的文献求助10
3分钟前
3分钟前
3分钟前
张小美发布了新的文献求助10
4分钟前
半城微凉应助科研通管家采纳,获得10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
tishe7完成签到,获得积分10
4分钟前
feifei发布了新的文献求助10
4分钟前
所所应助张小美采纳,获得10
4分钟前
乐乐应助qls123采纳,获得10
4分钟前
qls123完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155601
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214