重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Machine learning for modeling N2O emissions from wastewater treatment plants: Aligning model performance, complexity, and interpretability

可解释性 机器学习 计算机科学 人工智能 特征选择 过程(计算) 特征(语言学) 人工神经网络 选型 数据挖掘 哲学 语言学 操作系统
作者
Mostafa Khalil,Ahmed AlSayed,Yang Liu,Peter A. Vanrolleghem
出处
期刊:Water Research [Elsevier]
卷期号:245: 120667-120667 被引量:25
标识
DOI:10.1016/j.watres.2023.120667
摘要

Nitrous oxide (N2O) emissions may account for up to 80 % of a wastewater treatment plant's (WWTP) total carbon footprint. Given the complexity of the pathways involved, estimating N2O emissions through mechanistic models still often fails to precisely depict process dynamics. Alternatively, data-driven methods for predicting N2O emissions hold substantial potential. However, so far, a comprehensive approach is still overlooked, impeding the advancement of full-scale application. Therefore, this study develops a comprehensive approach for using machine learning to perform online process modeling of N2O emissions. The approach is tested on a long-term N2O emission dataset from a full-scale WWTP. Uniquely, the proposed approach emphasizes not just model accuracy, but it also considers model complexity, computational speed, and interpretability, equipping operators with the insights needed for informed corrective actions. Algorithms with varying levels of complexity and interpretability including k-Nearest Neighbors (kNN), decision trees, ensemble learning models, and deep neural networks (DNN) were considered. Furthermore, a parametric multivariate outlier removal method was adjusted to account for data statistical distributions, significantly reducing data loss. By employing an effective feature selection methodology, a trade-off between data acquisition, model performance, and complexity was found, reducing the number of features by 40 % and decreasing data collection cost, model complexity and computational burden without significant effect on modeling accuracy. The best performing models are kNN (R2 = 0.88), AdaBoost (R2 = 0.94), and DNN (R2 = 0.90). Feature importance of models was analyzed and compared with process knowledge to test interpretability, guiding N2O mitigation decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
sci大户完成签到,获得积分10
1秒前
1秒前
HG20220101完成签到 ,获得积分10
2秒前
3秒前
flj发布了新的文献求助10
3秒前
小1贤发布了新的文献求助10
3秒前
zhao发布了新的文献求助10
4秒前
4秒前
4秒前
口香糖探长完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
SciGPT应助kmy采纳,获得10
6秒前
6秒前
wang发布了新的文献求助10
7秒前
7秒前
汤糖糖完成签到 ,获得积分10
7秒前
8秒前
希望天下0贩的0应助aaaaa采纳,获得10
8秒前
称心的翠绿完成签到,获得积分10
8秒前
001399发布了新的文献求助10
8秒前
吴世勋fans发布了新的文献求助10
8秒前
PhD完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
张艳坤完成签到 ,获得积分10
9秒前
dynamoo应助乐正映雁采纳,获得10
9秒前
zy完成签到,获得积分10
9秒前
Orange应助1649639951qq采纳,获得20
9秒前
ll发布了新的文献求助10
9秒前
微笑的觅荷完成签到,获得积分10
10秒前
科目三应助wzy采纳,获得10
10秒前
10秒前
锣大炮发布了新的文献求助10
11秒前
11秒前
留白发布了新的文献求助10
11秒前
聪明的招牌完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516