亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for modeling N2O emissions from wastewater treatment plants: Aligning model performance, complexity, and interpretability

可解释性 机器学习 计算机科学 人工智能 特征选择 过程(计算) 特征(语言学) 人工神经网络 选型 数据挖掘 哲学 语言学 操作系统
作者
Mostafa Khalil,Ahmed AlSayed,Yang Liu,Peter A. Vanrolleghem
出处
期刊:Water Research [Elsevier BV]
卷期号:245: 120667-120667 被引量:25
标识
DOI:10.1016/j.watres.2023.120667
摘要

Nitrous oxide (N2O) emissions may account for up to 80 % of a wastewater treatment plant's (WWTP) total carbon footprint. Given the complexity of the pathways involved, estimating N2O emissions through mechanistic models still often fails to precisely depict process dynamics. Alternatively, data-driven methods for predicting N2O emissions hold substantial potential. However, so far, a comprehensive approach is still overlooked, impeding the advancement of full-scale application. Therefore, this study develops a comprehensive approach for using machine learning to perform online process modeling of N2O emissions. The approach is tested on a long-term N2O emission dataset from a full-scale WWTP. Uniquely, the proposed approach emphasizes not just model accuracy, but it also considers model complexity, computational speed, and interpretability, equipping operators with the insights needed for informed corrective actions. Algorithms with varying levels of complexity and interpretability including k-Nearest Neighbors (kNN), decision trees, ensemble learning models, and deep neural networks (DNN) were considered. Furthermore, a parametric multivariate outlier removal method was adjusted to account for data statistical distributions, significantly reducing data loss. By employing an effective feature selection methodology, a trade-off between data acquisition, model performance, and complexity was found, reducing the number of features by 40 % and decreasing data collection cost, model complexity and computational burden without significant effect on modeling accuracy. The best performing models are kNN (R2 = 0.88), AdaBoost (R2 = 0.94), and DNN (R2 = 0.90). Feature importance of models was analyzed and compared with process knowledge to test interpretability, guiding N2O mitigation decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
31秒前
闫靖南发布了新的文献求助10
38秒前
苏苏完成签到,获得积分10
44秒前
1分钟前
Harrison发布了新的文献求助10
1分钟前
温不胜的破木吉他完成签到 ,获得积分10
1分钟前
Otter完成签到,获得积分0
1分钟前
科研通AI5应助Harrison采纳,获得10
1分钟前
闫靖南完成签到,获得积分10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
Jayzie完成签到 ,获得积分10
2分钟前
章鱼完成签到,获得积分10
3分钟前
秋天完成签到,获得积分10
3分钟前
3分钟前
xiaxia发布了新的文献求助20
3分钟前
wwrjj完成签到,获得积分10
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
4分钟前
百里幻竹发布了新的文献求助10
4分钟前
fdwonder完成签到,获得积分10
4分钟前
星辰大海应助xiaxia采纳,获得30
4分钟前
量子星尘发布了新的文献求助10
5分钟前
蜡笔小新完成签到,获得积分10
5分钟前
zhovy完成签到 ,获得积分10
5分钟前
5分钟前
Harrison发布了新的文献求助10
5分钟前
dynamoo完成签到,获得积分10
5分钟前
小马甲应助科研通管家采纳,获得10
5分钟前
壮观的海豚完成签到 ,获得积分10
5分钟前
6分钟前
xiaxia发布了新的文献求助30
6分钟前
自信号厂完成签到 ,获得积分0
6分钟前
852应助xiaxia采纳,获得30
7分钟前
和气生财君完成签到 ,获得积分10
7分钟前
CCS完成签到 ,获得积分10
7分钟前
dao发布了新的文献求助10
7分钟前
花落无声完成签到 ,获得积分10
7分钟前
馆长应助科研通管家采纳,获得30
7分钟前
彩虹儿应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910105
求助须知:如何正确求助?哪些是违规求助? 4186094
关于积分的说明 12999112
捐赠科研通 3953369
什么是DOI,文献DOI怎么找? 2167888
邀请新用户注册赠送积分活动 1186329
关于科研通互助平台的介绍 1093413