Serum uric acid to high-density lipoprotein cholesterol ratio is a promising marker for identifying metabolic syndrome in nondiabetic Chinese men

医学 内科学 代谢综合征 尿酸 腰围 甘油三酯 高密度脂蛋白 接收机工作特性 糖尿病 人口 内分泌学 国家胆固醇教育计划 体质指数 胆固醇 胃肠病学 肥胖 环境卫生
作者
Xinwen Yu,Sun Fei,Jie Ming,Shengru Liang,Wencheng Zhang,Li Wang,Qiaoyue Li,Qian Xu,Li Wang,Lei Shi,Bin Gao,Qiuhe Ji
出处
期刊:Postgraduate Medicine [Informa]
卷期号:135 (7): 741-749 被引量:8
标识
DOI:10.1080/00325481.2023.2263372
摘要

To explore the relationship between serum uric acid (UA) and high-density lipoprotein cholesterol (HDL-C) ratio (UHR) and metabolic syndrome (MetS) in nondiabetic individuals.A total of 15,760 nondiabetic participants were screened from the China National Diabetes and Metabolic Disorders Study. Pearson correlation was used to determine the correlation between the components of MetS and UHR, HDL-C, and UA. Receiver operating characteristic curves were used to evaluate the ability of UHR, HDL-C, and UA to identify MetS in the nondiabetic population.A total of 6,386 men and 9,374 women were enrolled in this study. There were 1,480 (23.2%) men and 1,828 (19.5%) women with MetS. UHR significantly correlated with the components of MetS in men and women, especially with waist circumference and triglyceride. In men, although HDL-C showed a higher specificity index, UHR presented higher sensitivity index and area under the curve (AUC) than HDL-C (P = 0.0001) and UA (P < 0.0001), with AUC (95% CI) of 0.762 (0.752-0.773). Higher AUCs of UHR relative to HDL-C and UA were also observed in the age groups <40 and 40-59 years. There was no significant difference in AUC between UHR and HDL-C in the age group ≥60 years (P = 0.370). However, similar results were not observed in women.UHR significantly correlated with the components of MetS and could serve as a novel and reliable marker for identifying the population at a high risk of MetS in nondiabetic men, especially in younger adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卡思发布了新的文献求助10
1秒前
Rui完成签到,获得积分10
2秒前
3秒前
wanci应助刘喵喵采纳,获得10
4秒前
隐形曼青应助xiaoran采纳,获得10
4秒前
6秒前
7秒前
梅子完成签到 ,获得积分10
7秒前
ahunhy完成签到 ,获得积分10
8秒前
Akim应助xhy采纳,获得10
9秒前
bestkomorebi发布了新的文献求助10
10秒前
iNk应助科研通管家采纳,获得20
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
猪猪hero应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
活力的之槐完成签到 ,获得积分10
12秒前
hannet91发布了新的文献求助10
13秒前
不倦完成签到,获得积分20
14秒前
14秒前
14秒前
healthy发布了新的文献求助10
16秒前
不倦发布了新的文献求助50
17秒前
18秒前
所所应助打翻了一罐温柔采纳,获得10
18秒前
黄旭东关注了科研通微信公众号
18秒前
刘喵喵发布了新的文献求助10
19秒前
20秒前
善学以致用应助hgl采纳,获得10
20秒前
xiaoran发布了新的文献求助10
21秒前
21秒前
seine发布了新的文献求助20
26秒前
zyb发布了新的文献求助10
27秒前
27秒前
fwm完成签到,获得积分10
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526093
求助须知:如何正确求助?哪些是违规求助? 3106509
关于积分的说明 9280568
捐赠科研通 2804080
什么是DOI,文献DOI怎么找? 1539235
邀请新用户注册赠送积分活动 716514
科研通“疑难数据库(出版商)”最低求助积分说明 709478