工作流程
计算机科学
反射(计算机编程)
曲面(拓扑)
共形映射
功率(物理)
物理
几何学
数学
量子力学
数据库
数学分析
程序设计语言
作者
Erda Wen,Xiaozhen Yang,Daniel F. Sievenpiper
标识
DOI:10.1038/s41467-023-43473-y
摘要
Manipulating the electromagnetic (EM) scattering behavior from an arbitrary surface dynamically on arbitrary design goals is an ultimate ambition for many EM stealth and communication problems, yet it is nearly impossible to accomplish with conventional analysis and optimization techniques. Here we present a reconfigurable conformal metasurface prototype as well as a workflow that enables it to respond to multiple design targets on the reflection pattern with extremely low on-site computing power and time. The metasurface is driven by a sequential tandem neural network which is pre-trained using actual experimental data, avoiding any possible errors that may arise from calculation, simulation, or manufacturing tolerances. This platform empowers the surface to operate accurately in a complex environment including varying incident angle and operating frequency, or even with other scatterers present close to the surface. The proposed data-driven approach requires minimum amount of prior knowledge and human effort yet provides maximized versatility on the reflection control, stepping towards the end form of intelligent tunable EM surfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI