Prediction of Mild Cognitive Impairment Progression to Alzheimer’s Disease Based on Diffusion Tensor Imaging-Derived Diffusion Parameters: Construction and Validation of a Nomogram

列线图 接收机工作特性 医学 磁共振弥散成像 逻辑回归 曲线下面积 临床痴呆评级 痴呆 内科学 心理学 磁共振成像 疾病 放射科
作者
Xuefei Cheng,Dongxue Li,Jiaxuan Peng,Zhenyu Shu,Xiaowei Xing
出处
期刊:European Neurology [S. Karger AG]
卷期号:86 (6): 408-417 被引量:1
标识
DOI:10.1159/000534767
摘要

<b><i>Introduction:</i></b> The aim of the study was to construct and validate a nomogram that combines diffusion tensor imaging (DTI) parameters and clinically relevant features for predicting the progression of mild cognitive impairment (MCI) to Alzheimer’s disease (AD). <b><i>Method:</i></b> A retrospective analysis was conducted on the MRI and clinical data of 121 MCI patients, of whom 32 progressed to AD during a 4-year follow-up period. The MCI patients were divided into training and validation sets at a ratio of 7:3. DTI features were extracted from MCI patient data in the training set, and their dimensionality was reduced to construct a radiomics signature (RS). Then, combining the RS with independent predictors of MCI disease progression, a joint model was constructed, and a nomogram was generated. Finally, the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA) were used to evaluate the diagnostic and clinical efficacy of the nomogram based on the data from the validation set. <b><i>Result:</i></b> The AUCs of the RS in the training and validation sets were 0.81 and 0.84, with sensitivities of 0.87 and 0.78 and specificities of 0.71 and 0.81, respectively. Multiple logistic regression analysis showed that the RS, clinical dementia rating scale score, and Alzheimer's disease assessment scale score were the independent predictors of progression and were thus used to construct the nomogram. The AUCs of the nomogram in the training and validation sets were 0.89 and 0.91, respectively, with sensitivities of 0.78 and 0.89 and specificities of 0.90 and 0.88, respectively. DCA showed that the nomogram was the most valuable model for predicting the progression of MCI to AD and that it provided greater net benefits than other analysed models. <b><i>Conclusion:</i></b> Changes in white matter fibre bundles can serve as predictive imaging markers for MCI disease progression, and the combination of white matter DTI features and relevant clinical features can be used to construct a nomogram with important predictive value for MCI disease progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助phy采纳,获得10
2秒前
小白发布了新的文献求助10
2秒前
yyy发布了新的文献求助10
2秒前
447完成签到,获得积分20
3秒前
大模型应助jackie采纳,获得10
3秒前
科研通AI5应助燕燕于飞采纳,获得10
3秒前
ABC发布了新的文献求助10
4秒前
4秒前
只想学习发布了新的文献求助10
4秒前
4秒前
迟大猫应助无私的含海采纳,获得10
4秒前
徐无剑发布了新的文献求助10
4秒前
科研通AI5应助安东尼奥采纳,获得150
5秒前
Angela发布了新的文献求助10
5秒前
CodeCraft应助科研小白采纳,获得10
6秒前
6秒前
chenzibo发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
大胆的从雪完成签到,获得积分10
8秒前
羊羊羊完成签到,获得积分10
8秒前
9秒前
Evaporate发布了新的文献求助10
13秒前
杰尼龟发布了新的文献求助10
13秒前
13秒前
Sue.mi发布了新的文献求助10
13秒前
李健的小迷弟应助pysa采纳,获得10
14秒前
Jasper应助大胆的从雪采纳,获得10
14秒前
充电宝应助侏罗纪世界采纳,获得30
15秒前
16秒前
jackie发布了新的文献求助10
18秒前
安东尼奥发布了新的文献求助150
19秒前
吃不饱发布了新的文献求助30
20秒前
Akim应助Angela采纳,获得10
20秒前
21秒前
Orange应助夏尔酱采纳,获得10
21秒前
等风的人发布了新的文献求助10
22秒前
ABC完成签到,获得积分20
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483504
求助须知:如何正确求助?哪些是违规求助? 3072815
关于积分的说明 9128148
捐赠科研通 2764341
什么是DOI,文献DOI怎么找? 1517190
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797