数学
布劳威尔不动点定理
凸几何
基本定理
闵可夫斯基空间
正多边形
丹斯金定理
一般化
几何学基础
不动点定理
纯数学
数字的几何学
平行四边形
数学证明
相交定理
几何学
凸集
数学分析
射影几何
微分几何
物理
铰链
凸优化
经典力学
作者
G. H. Hardy,E. M. Wright
出处
期刊:Oxford University Press eBooks
[Oxford University Press]
日期:2008-07-31
卷期号:: 523-548
标识
DOI:10.1093/oso/9780199219858.003.0024
摘要
Abstract Introduction and restatement of the fundamental theorem. This chapter is an introduction to the ‘geometry of numbers’, the subject created by Minkowski on the basis of his fundamental Theorem 37 and its generalization in space of ndimensions We shall need the n-dimensional generalizations of the notions which we used in §§ 3.9–11; but these, as we said in § 3.11, are straightforward. We define a lattice, and equivalence of lattices, as in § 3.5, parallelograms being replaced by n-dimensional parallelepipeds; and a convex region as in the first definition of § 3.9.† Minkowski’s theorem is then Theorem 446. Any convex region in n-dimensional space, symmetrical about the origin and of volume greater than2n, contains a point with integral coordinates, not all zero. Any of the proofs of Theorem 37 in Ch. III may be adapted to prove Theorem 446: we take, for example, Mordell’s.
科研通智能强力驱动
Strongly Powered by AbleSci AI