A machine learning prediction model for quantitative analyzing the influence of non-radiative voltage loss on non-fullerene organic solar cells

有机太阳能电池 轨道能级差 富勒烯 接受者 辐射传输 带隙 化学 材料科学 计算化学 化学物理 分子 物理 光电子学 有机化学 光学 量子力学 聚合物
作者
Di Huang,Kuo Wang,Zhennan Li,Haixin Zhou,Xiaojie Zhao,Xinyu Peng,Jipeng Wu,Jiaojiao Liang,Juan Meng,Ling Zhao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:475: 145958-145958 被引量:13
标识
DOI:10.1016/j.cej.2023.145958
摘要

The open-circuit voltage (Voc) in organic solar cells (OSCs) hardly exceeds 1.0 V because of the relatively high voltage loss caused by charge non-radiative recombination at the donor–acceptor interface. Herein, in this paper the machine learning (ML) prediction models are used to explore the relationship among the donor and acceptor structures, electronic properties, and the non-radiative voltage loss (△Vocnon-rad). Among the models, the prediction performance from the optimal random forest (RF) model has 13.48% enhancement compared with that of the support vector regression (SVR) model. A combination of correlation and importance is used to collaboratively screen out the key features of acceptor materials with low △Vocnon-rad in OSCs. The importance analysis indicates that the benzene-1,2-diamine, prop-2-en-1-imine and nitrogen sulfur bond are the important structures, which represents the electron-deficient unit (A') in the fused-ring core of non-fullerene acceptors (NFAs). It is worth mentioning that the selected key features also have good applicability in the small data with ternary OSCs, and its coefficient of determination (R2) is 0.704 in the testing set. In addition, the four new Y6 derivatives (Y6O, Y6B, Y18B, and Y18U) are designed by the screened key features. And quantum chemical calculations show that the introduction of benzene ring and branched side chain to the A' unit can make the HOMO and LUMO energy levels of the molecule tend to rise. More importantly, the HOMO-LUMO gap is 2.69 eV and the optical band gap is 1.80 eV in Y18B, which are smaller than those of Y6. Y18B also has the smallest electrostatic potential of 5.08 kcal/mol on the molecular surface. Significantly, it decreases the singlet–triplet energy gap and exciton binding energy of Y18B for effectively reducing the △Vocnon-rad in the device. This work provides an effective model to accelerate the exploration of new and highly efficient NFA-OSCs with the lower △Vocnon-rad.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助zmy采纳,获得10
刚刚
善学以致用应助enoot采纳,获得10
1秒前
JamesPei应助失眠的血茗采纳,获得10
1秒前
青山发布了新的文献求助10
1秒前
亻鱼发布了新的文献求助10
2秒前
脑洞疼应助成就的小熊猫采纳,获得10
2秒前
2秒前
waterclouds完成签到 ,获得积分10
2秒前
圆圈儿完成签到,获得积分10
2秒前
司空剑封完成签到,获得积分10
3秒前
3秒前
海棠yiyi完成签到,获得积分10
3秒前
3秒前
梁小鑫发布了新的文献求助10
3秒前
Jenny应助圈圈采纳,获得10
4秒前
内向青文完成签到,获得积分10
4秒前
lefora完成签到,获得积分10
4秒前
丰知然应助CO2采纳,获得10
5秒前
Zhihu完成签到,获得积分10
5秒前
feng完成签到,获得积分10
6秒前
6秒前
美丽稀完成签到,获得积分10
7秒前
PXY应助屁王采纳,获得10
7秒前
sunburst完成签到,获得积分10
7秒前
狼主完成签到 ,获得积分10
7秒前
吕亦寒完成签到,获得积分10
7秒前
junzilan发布了新的文献求助10
8秒前
ZL发布了新的文献求助10
8秒前
8秒前
亻鱼完成签到,获得积分10
8秒前
超级蘑菇完成签到 ,获得积分10
9秒前
9秒前
9秒前
congguitar完成签到,获得积分10
9秒前
10秒前
limof完成签到,获得积分20
10秒前
跳跃聪健发布了新的文献求助10
10秒前
168521kf完成签到,获得积分10
10秒前
11秒前
Avatar完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740