A novel robotic grasping method for moving objects based on multi-agent deep reinforcement learning

抓住 强化学习 计算机科学 过程(计算) 机器人 对象(语法) 人工智能 集合(抽象数据类型) 质量(理念) 增强学习 计算机视觉 模拟 哲学 认识论 程序设计语言 操作系统
作者
Yu Huang,Daxin Liu,Zhenyu Liu,Ke Wang,Qide Wang,Jianrong Tan
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:86: 102644-102644 被引量:4
标识
DOI:10.1016/j.rcim.2023.102644
摘要

To grasp the randomly moving objects in unstructured environment, a novel robotic grasping method based on multi-agent TD3 with high-quality memory (MA-TD3H) is proposed. During the grasping process, the MA-TD3H algorithm obtains the object's motion state from the vision detection module and outputs the velocity of the gripper. The quality of the sampled memory plays a crucial role in reinforcement learning models. In MA-TD3H, transitions are saved in the memory buffer and high-quality memory (H-memory) buffer respectively. When updating the actor network, transitions are adaptively sampled from the two buffers by a set ratio according to the current grasping success rate of the algorithm. Also, the multi-agent mechanism enables the MA-TD3H algorithm to control multiple agents for simultaneous training and experience sharing. In the simulation, MA-TD3H improves the success rate of grasping the moving object by around 25 percent, compared with TD3, DDPG and SAC. While in most cases, MA-TD3H spends 80 percent of the time of the other algorithms. In real-world experiments on grasping objects in different shapes and trajectories, the average grasping prediction success rate (GPSR) and grasping reaching success rate (GRSR) of MA-TD3H are above 90 percent and 80 percent respectively, and the average GRSR is improved by 20–30 percent compared with the other algorithms. In summary, simulated and real-world experiments validate that the MA-TD3H algorithm outperforms the other algorithms in robotic grasping for moving objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮的天真完成签到 ,获得积分10
1秒前
1秒前
科研通AI5应助复活的军团采纳,获得30
2秒前
丁牛青发布了新的文献求助10
3秒前
shacodow发布了新的文献求助10
4秒前
6秒前
宇心完成签到,获得积分10
6秒前
代小葵完成签到,获得积分10
9秒前
10秒前
科研通AI5应助妩媚采纳,获得10
11秒前
是容与呀完成签到,获得积分10
11秒前
xiaokang123应助UGO采纳,获得10
14秒前
刻苦的白梅完成签到,获得积分10
14秒前
Wei完成签到,获得积分10
14秒前
15秒前
Mojito发布了新的文献求助10
15秒前
15秒前
西原的橙果完成签到,获得积分10
17秒前
Rookie完成签到 ,获得积分10
18秒前
JamesPei应助大利采纳,获得10
18秒前
王文豪发布了新的文献求助10
19秒前
羞涩的曼凡完成签到,获得积分10
20秒前
FloppyWow发布了新的文献求助10
20秒前
长情半邪完成签到 ,获得积分10
21秒前
领导范儿应助MRM采纳,获得10
21秒前
eli完成签到,获得积分10
21秒前
23秒前
闪闪的妙竹给闪闪的妙竹的求助进行了留言
23秒前
23秒前
陈龙完成签到,获得积分10
23秒前
26秒前
李爱国应助王文豪采纳,获得10
26秒前
Emily完成签到,获得积分20
27秒前
替我活着发布了新的文献求助10
27秒前
27秒前
28秒前
士心发布了新的文献求助30
28秒前
29秒前
31秒前
吃猫的鱼发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174