Machine learning based prediction and experimental validation of arsenite and arsenate sorption on biochars

生物炭 砷酸盐 亚砷酸盐 吸附 均方误差 吸附 决定系数 阿达布思 环境化学 化学 环境科学 数学 统计 机器学习 计算机科学 支持向量机 有机化学 热解
作者
Wei Zhang,Waqar Muhammad Ashraf,Sachini Supunsala Senadheera,Daniel S. Alessi,Filip Tack,Yong Sik Ok
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:904: 166678-166678 被引量:15
标识
DOI:10.1016/j.scitotenv.2023.166678
摘要

Arsenic (As) contamination in water is a significant environmental concern with profound implications for human health. Accurate prediction of the adsorption capacity of arsenite [As(III)] and arsenate [As(V)] on biochar is vital for the reclamation and recycling of polluted water resources. However, comprehending the intricate mechanisms that govern arsenic accumulation on biochar remains a formidable challenge. Data from the literature on As adsorption to biochar was compiled and fed into machine learning (ML) based modelling algorithms, including AdaBoost, LGBoost, and XGBoost, in order to build models to predict the adsorption efficiency of As(III) and As(V) to biochar, based on the compositional and structural properties. The XGBoost model showed superior accuracy and performance for prediction of As adsorption efficiency (for As(III): coefficient of determination (R2) = 0.93 and root mean square error (RMSE) = 1.29; for As(V), R2 = 0.99, RMSE = 0.62). The initial concentrations of As(III) and As(V) as well as the dosage of the adsorbent were the most significant factors influencing adsorption, explaining 48 % and 66 % of the variability for As(III) and As(V), respectively. The structural properties and composition of the biochar explained 12 % and 40 %, respectively, of the variability of As(III) adsorption, and 13 % and 21 % of that of As(V). The XGBoost models were validated using experimental data. R2 values were 0.9 and 0.84, and RMSE values 6.5 and 8.90 for As(III) and As(V), respectively. The ML approach can be a valuable tool for improving the treatment of inorganic As in aqueous environments as it can help estimate the optimal adsorption conditions of As in biochar-amended water, and serve as an early warning for As-contaminated water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AbleSpen完成签到,获得积分10
1秒前
君君应助wlt123采纳,获得20
1秒前
1秒前
缓慢犀牛完成签到 ,获得积分10
2秒前
我要当科研大佬完成签到,获得积分10
2秒前
不扯先生发布了新的文献求助10
3秒前
3秒前
agrlook完成签到,获得积分10
3秒前
4秒前
4秒前
风趣姿发布了新的文献求助10
4秒前
英姑应助Cheung2121采纳,获得10
5秒前
6秒前
6秒前
spotlight完成签到,获得积分10
6秒前
缓慢安阳发布了新的文献求助10
7秒前
8秒前
JamesPei应助聿1988采纳,获得10
8秒前
可爱的函函应助xiaoxixiccccc采纳,获得10
8秒前
9秒前
9秒前
白羊关注了科研通微信公众号
9秒前
感性的强炫完成签到,获得积分10
9秒前
10秒前
领导范儿应助小k采纳,获得10
10秒前
10秒前
10秒前
LuciusHe完成签到,获得积分10
10秒前
wxyshare应助奋斗的梦松采纳,获得10
10秒前
11秒前
11秒前
聪慧的小伙完成签到 ,获得积分10
11秒前
Lojong发布了新的文献求助10
12秒前
小福同学完成签到 ,获得积分10
12秒前
13秒前
14秒前
14秒前
PKH发布了新的文献求助10
14秒前
科研小秦发布了新的文献求助10
15秒前
爆米花应助ShuxianYang采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322192
求助须知:如何正确求助?哪些是违规求助? 4463759
关于积分的说明 13891152
捐赠科研通 4355055
什么是DOI,文献DOI怎么找? 2392149
邀请新用户注册赠送积分活动 1385755
关于科研通互助平台的介绍 1355494