已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning based prediction and experimental validation of arsenite and arsenate sorption on biochars

生物炭 砷酸盐 亚砷酸盐 吸附 均方误差 吸附 决定系数 阿达布思 环境化学 化学 环境科学 数学 统计 机器学习 计算机科学 支持向量机 有机化学 热解
作者
Wei Zhang,Waqar Muhammad Ashraf,Sachini Supunsala Senadheera,Daniel S. Alessi,Filip Tack,Yong Sik Ok
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:904: 166678-166678 被引量:27
标识
DOI:10.1016/j.scitotenv.2023.166678
摘要

Arsenic (As) contamination in water is a significant environmental concern with profound implications for human health. Accurate prediction of the adsorption capacity of arsenite [As(III)] and arsenate [As(V)] on biochar is vital for the reclamation and recycling of polluted water resources. However, comprehending the intricate mechanisms that govern arsenic accumulation on biochar remains a formidable challenge. Data from the literature on As adsorption to biochar was compiled and fed into machine learning (ML) based modelling algorithms, including AdaBoost, LGBoost, and XGBoost, in order to build models to predict the adsorption efficiency of As(III) and As(V) to biochar, based on the compositional and structural properties. The XGBoost model showed superior accuracy and performance for prediction of As adsorption efficiency (for As(III): coefficient of determination (R2) = 0.93 and root mean square error (RMSE) = 1.29; for As(V), R2 = 0.99, RMSE = 0.62). The initial concentrations of As(III) and As(V) as well as the dosage of the adsorbent were the most significant factors influencing adsorption, explaining 48 % and 66 % of the variability for As(III) and As(V), respectively. The structural properties and composition of the biochar explained 12 % and 40 %, respectively, of the variability of As(III) adsorption, and 13 % and 21 % of that of As(V). The XGBoost models were validated using experimental data. R2 values were 0.9 and 0.84, and RMSE values 6.5 and 8.90 for As(III) and As(V), respectively. The ML approach can be a valuable tool for improving the treatment of inorganic As in aqueous environments as it can help estimate the optimal adsorption conditions of As in biochar-amended water, and serve as an early warning for As-contaminated water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Perry完成签到,获得积分0
1秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
栖枝完成签到 ,获得积分10
7秒前
8秒前
山楂发布了新的文献求助10
11秒前
cc发布了新的文献求助10
12秒前
Wish完成签到,获得积分10
13秒前
草莓熊1215完成签到 ,获得积分10
16秒前
在水一方应助糖果屋采纳,获得10
17秒前
19秒前
含蓄的易文完成签到,获得积分10
21秒前
不能随便完成签到,获得积分10
22秒前
上官若男应助光亮翠风采纳,获得10
22秒前
深情安青应助优美紫槐采纳,获得10
23秒前
能干的阿拉蕾完成签到 ,获得积分10
23秒前
Echo发布了新的文献求助10
23秒前
华仔应助wzk采纳,获得10
24秒前
乔治韦斯莱完成签到 ,获得积分10
24秒前
bosslin完成签到,获得积分10
26秒前
旺仔先生完成签到 ,获得积分10
26秒前
29秒前
30秒前
struggling2026完成签到 ,获得积分10
32秒前
33秒前
小哈完成签到,获得积分10
34秒前
满意妙梦发布了新的文献求助10
34秒前
36秒前
小哈发布了新的文献求助20
37秒前
bosslin发布了新的文献求助10
38秒前
坚强紫山发布了新的文献求助10
41秒前
WY完成签到 ,获得积分10
42秒前
yuanyuan发布了新的文献求助10
44秒前
45秒前
48秒前
情怀应助科研通管家采纳,获得10
50秒前
BowieHuang应助科研通管家采纳,获得10
50秒前
慕青应助科研通管家采纳,获得10
50秒前
ceeray23应助科研通管家采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599628
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838385
捐赠科研通 4669488
什么是DOI,文献DOI怎么找? 2538128
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898