Machine learning based prediction and experimental validation of arsenite and arsenate sorption on biochars

生物炭 砷酸盐 亚砷酸盐 吸附 均方误差 吸附 决定系数 阿达布思 环境化学 化学 环境科学 数学 统计 机器学习 计算机科学 支持向量机 有机化学 热解
作者
Wei Zhang,Waqar Muhammad Ashraf,Sachini Supunsala Senadheera,Daniel S. Alessi,Filip Tack,Yong Sik Ok
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:904: 166678-166678 被引量:15
标识
DOI:10.1016/j.scitotenv.2023.166678
摘要

Arsenic (As) contamination in water is a significant environmental concern with profound implications for human health. Accurate prediction of the adsorption capacity of arsenite [As(III)] and arsenate [As(V)] on biochar is vital for the reclamation and recycling of polluted water resources. However, comprehending the intricate mechanisms that govern arsenic accumulation on biochar remains a formidable challenge. Data from the literature on As adsorption to biochar was compiled and fed into machine learning (ML) based modelling algorithms, including AdaBoost, LGBoost, and XGBoost, in order to build models to predict the adsorption efficiency of As(III) and As(V) to biochar, based on the compositional and structural properties. The XGBoost model showed superior accuracy and performance for prediction of As adsorption efficiency (for As(III): coefficient of determination (R2) = 0.93 and root mean square error (RMSE) = 1.29; for As(V), R2 = 0.99, RMSE = 0.62). The initial concentrations of As(III) and As(V) as well as the dosage of the adsorbent were the most significant factors influencing adsorption, explaining 48 % and 66 % of the variability for As(III) and As(V), respectively. The structural properties and composition of the biochar explained 12 % and 40 %, respectively, of the variability of As(III) adsorption, and 13 % and 21 % of that of As(V). The XGBoost models were validated using experimental data. R2 values were 0.9 and 0.84, and RMSE values 6.5 and 8.90 for As(III) and As(V), respectively. The ML approach can be a valuable tool for improving the treatment of inorganic As in aqueous environments as it can help estimate the optimal adsorption conditions of As in biochar-amended water, and serve as an early warning for As-contaminated water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助水水采纳,获得10
刚刚
C2750发布了新的文献求助10
刚刚
大模型应助匆匆采纳,获得10
刚刚
clover发布了新的文献求助10
刚刚
1秒前
迷路的芝麻完成签到 ,获得积分10
1秒前
充电宝应助Katherine采纳,获得10
1秒前
小松鼠完成签到 ,获得积分10
1秒前
典雅的苗条完成签到,获得积分10
2秒前
2秒前
123完成签到 ,获得积分10
3秒前
3秒前
3秒前
小蘑菇应助凡凡采纳,获得10
3秒前
qwenrou完成签到,获得积分20
4秒前
vv发布了新的文献求助10
4秒前
YY发布了新的文献求助10
5秒前
5秒前
爆米花发布了新的文献求助10
5秒前
搜集达人应助迷人问兰采纳,获得10
6秒前
ji完成签到,获得积分10
6秒前
桐桐应助遐蝶采纳,获得10
6秒前
ww完成签到,获得积分10
6秒前
慕青应助liuzengzhang666采纳,获得10
7秒前
7秒前
qwenrou发布了新的文献求助10
7秒前
8秒前
爱吃简便泡菜的小智完成签到 ,获得积分10
8秒前
7473完成签到,获得积分10
9秒前
zheng完成签到,获得积分10
9秒前
9秒前
不才完成签到,获得积分10
10秒前
10秒前
iNk应助NAN采纳,获得10
10秒前
所所应助阿星捌采纳,获得10
11秒前
pretty完成签到,获得积分10
11秒前
洁净的天思完成签到,获得积分10
11秒前
Triste发布了新的文献求助10
12秒前
13秒前
科研通AI2S应助Godnian采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951455
求助须知:如何正确求助?哪些是违规求助? 3496905
关于积分的说明 11085004
捐赠科研通 3227298
什么是DOI,文献DOI怎么找? 1784400
邀请新用户注册赠送积分活动 868422
科研通“疑难数据库(出版商)”最低求助积分说明 801122